Check for
Updates

Jupyter Analytics: A Toolkit for Collecting, Analyzing, and
Visualizing Distributed Student Activity in Jupyter Notebooks

Zhenyu Cai
EPFL
Lausanne, Switzerland
zhenyu.cai@epfl.ch

Roland Tormey
EPFL
Lausanne, Switzerland
roland.tormey@epfl.ch

Abstract

Jupyter is a web-based, interactive computing environment that
supports many commonly-used programming languages. It has
been widely adopted in the CS education community and is now
rapidly expanding to other STEM disciplines due to the growing
integration of programming in STEM education. However, unlike
other educational platforms, there is currently no integrated way to
capture, analyze, and visualize student interaction data in Jupyter
notebooks. This means that teachers have limited to no visibility
into student activity, preventing them from drawing insights from
these data and providing timely interventions on the fly. In this
paper, we present Jupyter Analytics, an end-to-end solution for
teachers to collect, analyze, and visualize both synchronous and
asynchronous learning activities in Jupyter. The Jupyter Analyt-
ics system consists of two JupyterLab extensions connected via a
cloud-based backend. On the student side, we introduce the Jupyter
Analytics Telemetry extension to anonymously capture students’
interaction activity with more structure and higher granularity
than log data. On the teacher side, we introduce the Jupyter Ana-
lytics Dashboard extension, which visualizes real-time student data
directly in the notebook interface. The Jupyter Analytics system
was developed through an iterative co-design process with univer-
sity instructors and teaching assistants, and has been implemented
and tested in several university STEM courses. We report two use
cases where Jupyter Analytics impacted teaching and learning in
the context of exercise sessions, and discuss the potential value of
our tools for CS education.

CCS Concepts

« Applied computing — Education; - Human-centered com-
puting — User interface toolkits; Participatory design; « Social
and professional topics — Student assessment.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0531-1/25/02

https://doi.org/10.1145/3641554.3701971

Richard Lee Davis
KTH Royal Institute of Technology
Stockholm, Sweden
rldavis@kth.se

172

Raphaél Mariétan
Swisscom
Lausanne, Switzerland
raphael. marietan@swisscom.com

Pierre Dillenbourg
EPFL
Lausanne, Switzerland
pierre.dillenbourg@epfl.ch

Keywords

STEM education; Jupyter; Educational Dashboards; Learning Ana-
lytics; Programming

ACM Reference Format:

Zhenyu Cai, Richard Lee Davis, Raphaél Mariétan, Roland Tormey, and Pierre
Dillenbourg. 2025. Jupyter Analytics: A Toolkit for Collecting, Analyzing,
and Visualizing Distributed Student Activity in Jupyter Notebooks. In Pro-
ceedings of the 56th ACM Technical Symposium on Computer Science Educa-
tion V. 1 (SIGCSE TS 2025), February 26-March 1, 2025, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3641554.3701971

1 Introduction

Computational literacy has become a central part of science, tech-
nology, engineering, and mathematics (STEM). Across STEM dis-
ciplines, professionals use computers when working with data,
creating models and simulations, and running experiments [4]. Be-
cause of the need for computational literacy in STEM professions,
the importance of integrating computer science (CS) into STEM
education has been explicitly called for in frameworks such as the
Next-Generation Science Standards [29]. In response, programming
and computation are becoming an integral part of STEM courses,
especially in higher education [13, 22, 28].

Integrating CS into STEM courses has been shown to have mean-
ingful learning benefits [3, 32]. However it also introduces a unique
set of challenges, since non-CS majors often have distinct needs
and expectations that differ from those of their CS-focused peers.
Rather than seeking to develop deep programming expertise, non-
majors place greater emphasis on learning computational tools and
techniques to support their primary fields of study [7, 18]. Accord-
ingly, non-majors stand to benefit from tools and resources that
can be seamlessly integrated into their research and coursework
without imposing a steep learning curve or exposing the low-level
computational details [18, 23].

Jupyter notebooks are a tool that fulfills many of the needs of
non-majors in STEM courses. Jupyter notebooks provide a literate
programming environment [21] where code, data, interactive con-
trols, and text are combined in a single shareable document [15].
Jupyter notebooks consist of a series of “cells” that can be executed
in any sequence, supporting experimentation and rapid feedback.
For hiding low-level details, supporting iterative and non-linear
development, and packaging these features into the familiar lab-
notebook format, Jupyter has been named “one of the ten computer

https://doi.org/10.1145/3641554.3701971
https://doi.org/10.1145/3641554.3701971
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641554.3701971&domain=pdf&date_stamp=2025-02-18

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

codes that transformed science” [27] and has been widely adopted
across CS and STEM disciplines [1, 5, 8, 14, 33].

In STEM courses incorporating Jupyter notebooks, however, a
major problem is that teachers lack visibility into student activity
in Jupyter notebooks. Jupyter was not explicitly designed as an
educational tool, and as such lacks the data-collection and visual-
ization features that are common in learning management systems.
Prior work has shown that tools which provide the ability to collect,
process, and visualize student interaction data provide numerous
benefits for teachers and students. Examples include early detection
of struggling learners [2, 11, 24], disengagement identification in
large classes [20], and the ability to provide timely, explicit instruc-
tion (i.e., classroom orchestration) [12, 16].

The fact that Jupyter lacks data collection and visualization tools
is particularly problematic because of its widespread and common
use in STEM courses with non-CS majors. As previously men-
tioned, these students have unique expectations and needs that
differ from those of CS majors. In particular, non-majors benefit
from well-timed explicit instruction [23] and responsive support
during problem solving [19]. When students use Jupyter notebooks,
these forms of support can be difficult for teachers to provide be-
cause they lack tools that provide visibility into student activity.
While instructors can address this problem by physically visiting
students in the classroom and viewing their screens, this is less
viable in courses with large enrollments, in online settings, or when
students work with Jupyter notebooks outside of class.

We built Jupyter Analytics to help address this problem. Jupyter
Analytics is an end-to-end data collection and visualization toolkit
that was designed to meet the needs of STEM instructors in higher
education. The Jupyter Analytics system consists of two Jupyter-
Lab extensions connected via a cloud-based backend. On the stu-
dent side, we introduce the Jupyter Analytics Telemetry extension
to anonymously capture students’ interaction activity with more
structure and higher granularity than existing methods. On the
teacher side, we introduce the Jupyter Analytics Dashboard ex-
tension, which visualizes real-time student data directly in the
notebook interface. The system was developed through an iter-
ative co-design process with university instructors and teaching
assistants (TAs), and has been implemented and tested in several
university STEM courses. We report two use cases where Jupyter
Analytics positively impacted teaching and learning in the context
of exercise sessions, and discuss the potential value of our tools for
supporting responsive teaching in computational STEM education.

2 Related Work

While there are a number of Jupyter extensions for collecting inter-
action data [26, 30, 31], there are only a small number of end-to-end
analytics toolkits that collect, process, and visualize Jupyter data.
The first of these is nbgrader [17], which is part of the Jupyter
project and has been adopted widely because of its strengths in cre-
ating and grading Jupyter-notebook-based assignments. Nbgrader
collects data related to assignment grading, such as submission
timestamps and counts. It also maps the contents of notebook cells
with metadata, and stores grades and feedback in the database. How-
ever, because nbgrader is only used after students have submitted
their final notebooks, this means the tool can’t be used to provide

Zhenyu Cai, Richard Lee Davis, Raphaél Mariétan, Roland Tormey, & Pierre Dillenbourg

173

real-time information about students’ activity. Furthermore, be-
cause no interaction data is collected, nbgrader is unable to provide
insights related to the students’ process of working in notebooks.

A second tool that addresses some of the issues with nbgrader is
Notebook Progress Tracker (NPT) [6]. After configuring a session
on its website, a teacher can track students’ real-time progress by
checking the dashboard provided. The NPT dashboard visualizes
the number of students that have completed each questions for any
registered sessions, while it can also provide a list of student code
and plots, or data entries. However, these data have to be submitted
from students by manually calling a “send” function in the code,
instead of being collected automatically. Additionally, because the
NPT does not track click data, it is not able to provide real-time
information about students’ location in the notebook or their time
spent in specific cells.

While nbgrader and NPT do provide some visibility into stu-
dent activity in Jupyter notebooks, they fall short of providing a
holistic solution that supports the entire workflow from automatic
collection of real-time interaction data to data visualizations inte-
grated directly into Jupyter notebooks. This is the gap that Jupyter
Analytics was designed to fill.

3 Jupyter Analytics

Our primary goal was to bring teachers more visibility into students’
learning activities in Jupyter notebooks. This required a toolkit built
into the Jupyter platform that was easy to use, that would not affect
the user experience and system performance, and that would be
capable of retrieving large amounts of post-processed data and
visualizing them in a responsive way.

Telemetry Server Dashboard
& ' |

Authentication

Data storage

Data pre-processing

Figure 1: Overview of the system architecture

We designed and built Jupyter Analytics' with these constraints
in mind. There are three main components of Jupyter Analytics, as
Figure 1 shows:

(1) Jupyter Analytics Dashboard — a JupyterLab extension to

visualize and interact with collected data;

(2) Jupyter Analytics Telemetry — a JupyterLab extension to
record interactions with Jupyter notebooks;

(3) Jupyter Analytics Server — a cloud server to store and process
data, as well as handling user requests and verifying user
authenticity.

It should be noted that the two extensions can be easily installed

in users’ JupyterLab environments using common pip install com-
mands.

Jupyter Analytics: https://github.com/chili-epfl/jupyter-analytics

https://github.com/chili-epfl/jupyter-analytics

Jupyter Analytics

The design of Jupyter Analytics enables the collection of dis-
tributed student data from any computing environment that sup-
ports JupyterLab extensions, whether hosted individually or cen-
trally. The extensions are compatible with JupyterLab 3.x and 4.x
environments, making them suitable with most Jupyter installa-
tions.

3.1 The Jupyter Analytics Dashboard Extension

The main purpose of the dashboard extension is to provide teach-
ers with useful data analytics features that could facilitate respon-
sive teaching practices within specific educational contexts. To
achieve this, we took both synchronous and asynchronous use
cases into consideration when designing the dashboard, and built
the dashboard directly into the Jupyter interface. By layering ana-
lytics information directly into the notebook, we hoped to increase
usability and adoption, and to minimize task switching away from
the Jupyter notebook.

In the following sections we provide additional details about the
features in the dashboard extension (see Figure 2).

3.1.1 The Student Location Dashboard. The Student Location Dash-
board is integrated into the left panel, and can be accessed by click-
ing a button on the left sidebar. The primary function of the this
dashboard is to show where students are in the notebook in real
time. The location of each student is visualized directly in a table-of-
contents showing the structure of the code and markdown cells in
the notebook. The number of students in a cell is presented next to
the headings and thumbnails in the table-of-contents in the format
of active_number / total_number. The intensity of the background
colors correspond to the actual values - the darker the color is, the
more the students are active on the corresponding cells or sections.

The Student Location Dashboard was designed so teachers can
monitor the overall progress of their students at a glance. For ex-
ample, teachers who incorporate programming activities into their
lecture could use the dashboard to check if any students are falling
behind, and then adjust their lesson plan accordingly.

3.1.2 Aggregate Visualization. On the right panel, another dash-
board is presented to provide an aggregate view of different metrics
about real-time whole-class performance on the notebook. While
this dashboard is able to display any aggregate visualizations of
student data, in its current configuration it shows a bar chart that
visualizes the number of clicks, executions, and error-free execu-
tions of all code cells; and a bubble chart displaying the number of
students who have visited a cell (size) and the average time students
have spent on each cell (vertical displacement).

In real-time settings, these charts could be used to estimate class
engagement, problem-solving strategies (e.g., trial-and-error), and
issues with specific cells. Outside of class, aggregate visualizations
could be useful for reviewing the course materials. For example,
based on students’ coding strategies and time-on-task, teachers
could evaluate the difficulty level of the notebook and cells, and
revise them if needed.

3.1.3 Cell-Level Visibility. In addition to notebook-level visualiza-
tion, the right panel dashboard also provides visibility into students’
programming activities at the cell level. By clicking the dashboard
button next to a focused cell on the notebook, or by clicking on the

174

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

visualized numbers on the Student Location Dashboard, teachers
can navigate to the cell-level dashboard. Every time a student ex-
ecutes a code cell, the input and output (including plots) will be
displayed with a timestamp. Moreover, these codes and outputs
can be filtered by clicking on toggle buttons or by typing into the
search box, or sorted by time, length of code, or length of output.
This dashboard could be useful if teachers want to know if there
are common errors with a specific cell, which could be done by
entering keywords in the search box and toggling on the “Error”
filter. Additionally, when reviewing the course materials, teachers
could also dig into a problematic cell, because the dashboard still
keeps the latest records of students who have executed this cell.

3.1.4 Reflection & Posterior Analysis. The dashboard by default
is configured as a real-time tool, however, this can be disabled in
several ways, in order to benefit from the features that are useful
for asynchronous settings.

Playback. To further support asynchronous use, we introduce a
playback feature that allows teacher to review students’ activities
for each time step within a self-defined time span. This can be
accessed by clicking on the playback button on the notebook toolbar,
and the real-time attribute for all features will be automatically
disabled. When entering the playback mode, a time slider will
appear as the control panel. Teachers can move the pointer to
any moment of their interest, and all the dashboard features will
configured to display everything that was available at that moment.
The playback feature allows student activity during a lesson or
exercise session to be replayed, providing teachers with a way to
revisit and reflect on the lecture or exercise session.

Data Exporting. Comprehensive interaction data can be exported
by clicking on the “EXPORT” button and specifying a time range.
By exporting this data, instructors can perform their own analyses
outside of Jupyter Analytics, for example, performing a temporal
analysis of students’ programming behaviors.

3.2 The Telemetry Extension

The Telemetry Extension records user actions in Jupyter notebooks
and sends the fine-grained data to a cloud-based backend.

3.2.1 Respecting Privacy.

Anonymity. User IDs (if any) collected by Telemetry are automat-
ically encrypted before being processed. No identifiable information
is included in the database.

Opt In/Out. The first time students open a tagged notebook, a
pop-up window requests permission to collect their data in an
anonymous manner. If students choose to opt out, the Telemetry
Extension deactivates and no data is sent to the server. Even after
students have opted in to data collection, they are still able to opt
out by toggling a switch in the Settings.

3.2.2 Collected Data. Data are sent to the backend whenever a
student interacts with a notebook. Interactions include clicking
on the notebook and cells, creating or removing cells, as well as
executing cells — no matter whether it is a code cell or a markdown
cell. For code cell execution, its output (including the error message),

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Student Location Reflection

= File Edit View Run Kemel Git Nbgrader Tabs Settings Help
M ASSIGNMENT 6 - FFT PG = hesionment & - FrTipyo % |+
=8 +x00 > o vaidote
o = o T8+ XDO 5-0

1143

4ja3

23

+ 0.5 74t)

103

243

243

Python3 | die

cmie ©

Zhenyu Cai, Richard Lee Davis, Raphaél Mariétan, Roland Tormey, & Pierre Dillenbourg

& Pythons O

Cell View

Aggregate View

A

Notebook 2 Sl Notebook °
Cell (7617f017-12¢9-45d3-... ° Assignment 6 - FFT.ipynb AGE .
08 |
@Em o
H - i

User 33870130
s s

1. figure()
plt.plot(t, y, 'r')

pLt.grid ‘Time spent on each cell across users

Mode: Command @ Ln1,Col1 Assignment6 - FETipynb 0 [1 Mode: Command @ Ln1,Col1 Assignment6- FFTipynb 0 Q1

Figure 2: Overview of the dashboard interface

status, timestamp, and the programming language of the kernel are
logged.

3.3 The Server

Following the client-server architecture, the server manages re-
quests from two types of clients (i.e., Dashboard and Telemetry). It
handles tasks like request processing, data storage, access control,
and pre-processing raw data from Telemetry to prepare structured
data for Dashboard, in conjunction with other backend compo-
nents as introduced in the following sections. The backend can be
deployed in both cloud and self-managed servers, and users can ac-
cordingly configure the backend endpoint URLs for the extensions.

3.3.1 Application and Database. The backend application uses the
Flask framework with a PostgreSQL database. The Flask App is in
charge of communicating with the database to retrieve or store the
data, which are originally collected from students’ interactions and
pre-processed by the application.

3.3.2 Between-Extension Communication. In order to enable bidi-
rectional real-time communication between students and teachers,
Flask-SocketlIO is integrated into our Flask application. On the
server side, it handles connections and messages from both Dash-
board and Telemetry extensions. Whenever new student data is
available, Flask-SocketIO is used to send update messages to any
connected Dashboard extension. This is the part of the system that
enables real-time display of student interaction data.

3.4 Designing Jupyter Analytics

As outlined in Figure 3, the design process of Jupyter Analytics
involved three phases.

o Phase 1: we designed a web-based mock-up, which was used
in task-based interviews with 8 TAs; the outcome of this
qualitative study was obtaining a better understanding of

175

8 TAs 7 TAs, 9 sessions 5TAs & 1 Instructor, 13 sessions
FOOCK XXX
i SOCL > X
Phase 1 Phase 2 Phase 3
Prototype Iterative Co-design Iterative Co-design

Figure 3: Design process of Jupyter Analytics

the context and surfacing TAs’ needs, while also receiving
insightful feedback on the mock-up itself.

e Phase 2: we implemented Jupyter Analytics in a university
physics course, in which we went through a iterative co-
design process with 7 TAs; more details and use cases are
reported in section 4.2.

e Phase 3: we conducted another classroom study in a univer-
sity mathematics course through a longer iterative co-design
process with one instructor and 5 TAs; more details and use
cases are reported in section 4.3.

4 Implementation and Evaluation

4.1 Context: University Exercise Sessions

The university at the center of our research is a research institute
specializing in STEM disciplines. Exercise sessions (lab sessions)
are part of most courses, complementing lectures with practical
activities. In general, these sessions involve students working indi-
vidually or collectively on problems with access to instructors or
TAs for assistance. This was the context in which we introduced
and evaluated Jupyter Analytics.

4.2 Classroom Study 1: Supporting Classroom
Orchestration

We conducted a pilot study over nine exercise sessions in an un-
dergraduate physics course. All exercises were Jupyter notebooks,
and the number of students attending varied between 40 and 60

Jupyter Analytics

per session. In the fifth session, Jupyter Analytics was installed for
the class.

We observed these sessions and took field notes. The TA team in
this class comprised 6 PhD students and 1 Msc student (2 females, 5
males); each week one of the PhD students was responsible for cor-
recting the exercise. We triangulated the observation notes through
talking or exchanging emails with the TAs, as well as checking the
log data we collected from their interactions with the dashboard.

Normally in the middle of these sessions, TAs would stop the
class to correct the first part, ensuring most students were making
steady progress and able to work on the second part on they own.
These routines were usually delivered via announcements, leading
most students to pause their work and follow the instructions.

After Jupyter Analytics was installed, TAs used the Student Loca-
tion Dashboard to help them decide when to stop the class. Because
it visually displayed the real-time distribution of class activity on
the notebook, this provided objective indicators to complement
TAs’ subjective judgment on when to start correcting the exercise.
Based on our observations, TAs would check the dashboard over
and over again to identify the moment when most students had
reached an important milestone, and would then stop the class.

Similar behaviors of bringing the class together were captured
by the events logged when TAs interacted with the dashboard, as
shown in Figure 4: (a) TAs’ interactions over the whole exercise
session; (b) TAs’ interactions when making an announcement. Typ-
ically, when TAs speculated that students were making common
mistakes, they would go to the dashboard, check students’ codes
and error messages to test this hypothesis. As a TA described after
one exercise session: “it was that one other TA had realized it and
was asking around with the other TAs, I had noticed the mistake once
too and then I went to check the code cells, but we already had a pretty
big suspicion at the point we were checking it. Meanwhile [the head
TA] said that he had seen it too, so then we decided together to make
an announcement.”

3 (a) Observation Notes (Dec 7, 2023)
LJ
1 on F;’.’} . i 1. G noticed some common mistakes, and told C ;
o me o i o :' =2 2. C checked students’ codes on the Cell dashboard }
) 1 ! St 3. Cmade an announcement ;
® — s

10:15 10:30 10:45 11:00 11:15 11:30 11:45 >~ "

i (b) Notebook_cell_button oo oo o oo !
§ TOC_heading_clicked ®@® L] ° i
3 TOC_open_cell_dashboard ° 3
| 10:59 11:00 11:01 11:02 11:03 11:.04 |

Figure 4: TAs’ interactions with the dashboard

The act of bringing students together to discuss important topics
or reflect is an important part of “classroom orchestration” [10].
Effective classroom orchestration involves knowing when to bring
students together, and has been shown to have positive impacts on
learning [9]. Additionally, effective classroom orchestration (i.e.,
timed explicit instruction) has been identified as a way to support
non-majors in STEM courses [23]. This use case helps demonstrate
that by providing improved visibility into student behavior, Jupyter
Analytics can support more effective classroom orchestration in
computational STEM courses.

176

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

4.3 Classroom Study 2: Identifying
Collaborative Learning Patterns

The second study was implemented in a bachelor-level mathematics
course with a total of 71 students who consented to have their data
collected. There were thirteen exercise sessions over the semester,
six of which were graded. All exercises were Jupyter notebooks,
and needed to be completed in groups of three or four. Jupyter
analytics was installed in the second week of the course.

In this course, we adopted an iterative co-design process with the
teaching team. In addition to observing exercise sessions and taking
field notes, we also attended the weekly teaching-team meetings
before each exercise session. In this way, we were able to follow
their lesson plans, and proactively discuss with the instructor and 5
TAs (3 females, 2 males; 3 PhD students, 2 MSc students) regarding
the usage of our tools, as well as their perceived needs in the same
context. This made it possible to use an agile development approach
to rapidly develop new features based on their needs and integrate
them into Jupyter Analytics during the semester.

Each TA in the course was responsible for supporting 4-5 groups.
In one of the weekly TA meetings, TAs requested the ability to filter
data by the groups they were responsible for to reduce unnecessary
noise in the dashboard. In response, we implemented a group filter-
ing feature midway through the semester. Based on TAs’ feedback,
this feature helped them concentrate their efforts on monitoring
and assisting their groups, while minimizing the distractions and
cognitive load brought by extra information about other groups.

After implementing the ability to filter by groups, TAs used this
feature to identify a new issue in the course. By visualizing indi-
vidual student activity within each group, they noticed different
approaches to collaborating on the exercises. TAs had concerns
about one of these approaches—the parallel approach—which in-
volved each student in a group working on a different problem in
the notebook at the same time. This was believed to be problematic
because of the design of the notebooks, which consisted of prob-
lems that were designed to be worked on sequentially. Not only
did this approach reduce opportunities for collaborative learning,
it also led to situations where those responsible for later parts were
unable to make progress because they relied on results from prior
problems, leaving them with nothing to do while waiting for their
teammates finished the earlier sections.

Different collaboration strategies were identified from students’
interaction data collected by Telemetry. Three groups — A-4, B-
3, C-1 — were selected based on a preliminary analysis on their
activities. Figure 5 shows timelines of their programming processes
throughout the session, illustrating their different collaboration
patterns. Observation notes indicated that B-3 worked in pairs,
A-4 collaborated using a single notebook, and C-1 used multiple
notebooks but worked closely together, while one student moved
around to assist her peers and seek help as needed.

These observations were validated through follow-up interviews
with the groups. For A-4, typically they would first review the
assignment together to understand the tasks at hand. Then, one
was designated to write the code, while “the other two usually look
at the lesson and the PDFs, etc.” They adopted this strategy because
they realized the exercise followed a serial format. As one student
noted, "we can’t split the code. It doesn’t make sense".

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Cell 22 | =
Cell 21] ————
Cell 20 |) .
Cell 19 [|)

Cell 18 |

Cell 17

Cell 16 I

Cell 15 | L

Cell 14 Il] 0w | o mg .
Cell 13 |
Cell 12 | I
Cell 11 | g
Cell 10 | | [| olo oo | 0 o
Cell9 e

Cell8
Cell 7
Cell 6
Cell5
Cell4
Cell 3
Cell 2
Cell 1

Hcia
HC12
c1.3

11:30 12:00

WA4
11:30 12:00 10:30

10:30 11:00 11:00 11:30 12:00 10:30 11:00

Figure 5: Students’ different collaboration strategies

In contrast, B-3 and C-1 preferred splitting the work. C-1 was di-
vided into two pairs with different sets of skills. One pair included a
student skilled in programming to handle heavy coding tasks, work-
ing alongside another student. And the other two students “usually
do commentaries and graphs and stuff like that”. B-3 also worked
in two pairs, but without a precise plan. One student referred to
this strategy as “an improvisation”, explaining, “we just went with
whatever was happening at the moment”. Since they worked sep-
arately, there was no collaboration between pairs, unlike C-1 in
which one person coordinated the group work. This situation high-
lighted the concern that TAs had, as described by the student: “we
took more time on exercise five because we had some problems.
They continued going on, we stayed on.”

In addressing concerns about group dynamics, TAs appreciated
the visualizations for providing insight into various collaboration
patterns. In response to identifying unproductive strategies, one
TA suggested a solution: instead of releasing the notebook at the
beginning, they would first provide a non-interactive version of the
notebook and give students 10 minutes to plan their collaboration.
This intervention was carried out for the next two graded exercises,
and led to improved collaboration strategies.

This use case helps demonstrate that the data collected by Jupyter
Analytics made it possible to visualize and analyze complex collabo-
rative behaviors. Furthermore, TAs were able to design an effective
intervention in response, and to evaluate the intervention’s effec-
tiveness by consulting the data. While this did not require making
any changes to the data collected by the system, it did require
the development of new analysis methods and visualizations. This
points to the importance of the agile, iterative co-design process in
integrating analytics tools into computational STEM courses.

5 Discussion

Taken together, the two use cases described above indicate that
Jupyter Analytics helps to fill an important gap in computational
STEM courses where Jupyter notebooks are used. By capturing,
processing, and visualizing student interaction data, Jupyter An-
alytics provides much-needed visibility into student activity. Our
goal in building Jupyter Analytics was to provide teachers with
increased visibility so that they could be more responsive in their
teaching; and in each of the use cases, we described how teachers

Zhenyu Cai, Richard Lee Davis, Raphaél Mariétan, Roland Tormey, & Pierre Dillenbourg

177

used the novel sources of feedback provided by Jupyter Analytics
to respond to students’ needs.

Each of the use cases took place in a different domain (Math vs.
Physics), with different activities and learning goals. Nevertheless,
Jupyter Analytics provided useful information that supported in-
structors in productively modifying their teaching practices. We
interpret this as providing evidence that increased visibility into stu-
dent activity in Jupyter notebooks is valuable and needed, and that
our approach of building a holistic analytics toolkit that is directly
integrated into Jupyter provides benefits over other systems.

5.1 Lessons Learned

Overall, we received positive feedback on the Jupyter Analytics
toolkit. TAs found that it helped address their needs with minimal
effort, which led to TAs’ continuous usage and proactive ideation
throughout the iterative co-design process. We also found that our
co-design approach, which involved attending TA meetings during
the semester to debrief about tool use and identify emerging needs,
helped with tool implementation, adoption, and use.

We also identified obstacles to overcome. For example, while our
iterative design process allowed us to rapidly implement features
and improvements that could be tested during the semester, it
also decreased system stability and introduced bugs. Additionally,
our rapid development approach was sometimes at odds with the
pace of the institution, leading to delays in deployment due to the
institutional decision-making process. These lessons highlighted
the importance of careful planning, thorough testing, and fostering
and promoting cross-organizational collaboration [25], given that
there is usually no chance to restart or redo an educational session.

In the context of exercise sessions, we found that as TAs’ work-
load (e.g., answering questions) increased, their use of the tool
decreased. This suggests that there is still work to be done in inte-
grating the toolkit into their practices, such that the toolkit is able
to seamlessly support teaching practices regardless of the workload.

5.2 Conclusion

In this paper, we introduced Jupyter Analytics, an end-to-end toolkit
for teachers to collect, analyze, and visualize distributed student
activity in Jupyter notebooks. Two JupyterLab extensions were de-
veloped and integrated through a cloud-based backend: a Telemetry
Extension for data collection on the student side and a Dashboard
Extension for data presentation on the teacher side. The system was
implemented and tested in two university STEM courses through an
iterative co-design process with a total of twelve teaching assistants.
The results from these use cases showed that Jupyter Analytics pro-
vided improved visibility into student activity, and that instructors
were able to use this information to make their teaching more
responsive to students’ behaviors and needs. This supported our
hypothesis that building a holistic analytics toolkit that was directly
integrated into Jupyter would provide benefits over other systems
in computational STEM courses.

Acknowledgments

The project was funded by Swiss National Science Foundation
(SNSF) under grant number 407740_187534.

Jupyter Analytics SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

References [15] Brian E Granger and Fernando Pérez. 2021. Jupyter: Thinking and storytelling
[1] Abdulmalek Al-Gahmi, Yong Zhang, and Hugo Valle. 2022. Jupyter in the Class- Wl'th code and datg. Computing in Science & Engineering 23, 2 '(2021)’ 714
room: An Experience Report. In Proceedings of the 53rd ACM Technical Sympo- [16] Stian Haklev, Louis Pierre Faucon, Thanasis Hadzilacos, and Pierre Dillenbourg.
sium on Computer Science Education - Volume 1 (Providence, RI, USA) (SIGCSE 2017. FROG: rapid prototyping of collaborative learning scenarios. In Data
2022). Association for Computing Machinery, New York, NY, USA, 425-431. Driven Approaches in Digital Education: 12th European Conference on Technol-
htps://doi.org/10.1145/3478431.3499379 ’ T ’ ogy Enhanced Learning, EC-TEL 2017, Tallinn, Estonia, September 12-15, 2017,

Proceedings. Springer, Tallinn, Estonia.

Jessica B. Hamrick. 2016. Creating and Grading IPython/Jupyter Notebook
Level Using Context-Agnostic Features. In Proceedings of the 53rd ACM Tech- Assignments with NbGrader. In Proceedings of the 47th ACM Technical Sym-
nical Symposium on Computer Science Education - Volume 1 (Providence, RI, {)oszum on 'Co.mputmg Sctenc? Educattqn (Memphis, Tennessee, USA) (SIGCSE
USA) (SIGCSE 2022). Association for Computing Machinery, New York, NY, USA, 1 6).'Assoc1at10n for Computing Machinery, New York, NY, USA, 242. https:
147-153. https://doi.org/10.1145/3478431.3499298 //doi.org/10.1145/2839509.2850507 '

[3] Golnaz Arastoopour Irgens, Sugat Dabholkar, Connor Bain, Philip Woods, Kevin (18] Meng Han, Zhigang Li, Jing He, and Xin Tian. 2019. What are the Non-majors

. . - . Looking for in CS Classes?. In 2019 IEEE Frontiers in Education Conference (FIE).
Hall, Hillary Swanson, Michael Horn, and Uri Wilensky. 2020. Modeling and IEEE, Covington, KY, USA, 1-5. _https://doi.org/10.1109/FIE43999.3019.9028448

[19] Emma Hogan, Ruoxuan Li, and Adalbert Gerald Soosai Raj. 2023. CS0 vs. CS1:
Understanding Fears and Confidence amongst Non-majors in Introductory CS
Courses. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing
Machinery, New York, NY, USA, 25-31. https://doi.org/10.1145/3545945.3569865

&

Kai Arakawa, Qiang Hao, Wesley Deneke, Indie Cowan, Steven Wolfman, and

Abigayle Peterson. 2022. Early Identification of Student Struggles at the Topic (17

measuring high school students’ computational thinking practices in science.
Journal of Science Education and Technology 29 (2020), 137-161.

[4] Elham Beheshti. 2017. Computational thinking in practice: How STEM profes-
sionals use CT in their work. In American Education Research Association Annual
Meeting 2017. San Antonio, TX.

5] Sarah D. Castle. 2023. Leveraglr}g Computatlolnal Science Students Cod{ng [20] Hassan Khosravi and Kendra M.L. Cooper. 2017. Using Learning Analytics to
Strengths for Mathematics Learning. In Proceedings of the 54th ACM Technical . .
S . P ter Sci Education V. 1 (Toronto ON. Canada) (SIGCSE Investigate Patterns of Performance and Engagement in Large Classes. In Proceed-
Zggpozlum qnf oméﬂu eCr cience ;\tja ;_?n) (Noror;o K I\’TY 38;:) 2(63 269 ings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education
h) dsspma ion for Computing Machinery, New York, NY, ? e (Seattle, Washington, USA) (SIGCSE ’17). Association for Computing Machinery,
(6] Ettps'/ / CO“OS‘?/ 10'1342/ 3545?4]5)'.35619 861 2024, Notebook P Tracker. Re- New York, NY, USA, 309-314. https://doi.org/10.1145/3017680.3017711
vann L-Ourcier anc Aymeric ieuieveut. - NOLeboore frogress Lracker. Re [21] Donald Ervin Knuth. 1984. Literate programming. The computer journal 27, 2

trieved July 4, 2024 from https://courdier.pythonanywhere.com

[7] Jessica Q. Dawson, Meghan Allen, Alice Campbell, and Anasazi Valair. 2018.
Designing an Introductory Programming Course to Improve Non-Majors’ Expe-
riences. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education (Baltimore, Maryland, USA) (SIGCSE ’18). Association for Computing
Machinery, New York, NY, USA, 26-31. https://doi.org/10.1145/3159450.3159548

[8] Alessio De Santo, Juan Carlos Farah, Marc Lafuente Martinez, Arielle Moro,
Kristoffer Bergram, Aditya Kumar Purohit, Pascal Felber, Denis Gillet, and Adrian
Holzer. 2022. Promoting Computational Thinking Skills in Non-Computer-
Science Students: Gamifying Computational Notebooks to Increase Student En-
gagement. IEEE Transactions on Learning Technologies 15, 3 (2022), 392-405.
https://doi.org/10.1109/TLT.2022.3180588

(1984), 97-111.

Rubin Landau. 2006. Computational physics: A better model for physics educa-
tion? Computing in science & engineering 8, 5 (2006), 22-30.

Kathy A. Mills, Jen Cope, Laura Scholes, and Luke Rowe. 0. Coding and Compu-
tational Thinking Across the Curriculum: A Review of Educational Outcomes.
Review of Educational Research 0, 0 (0), 00346543241241327. https://doi.org/10.
3102/00346543241241327 arXiv:https://doi.org/10.3102/00346543241241327
Jonathan P. Munson and Joshua P. Zitovsky. 2018. Models for Early Identification
of Struggling Novice Programmers. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (Baltimore, Maryland, USA) (SIGCSE
’18). Association for Computing Machinery, New York, NY, USA, 699-704. https:
//doi.org/10.1145/3159450.3159476

[22

I
&

[24

[9] Pierre Dlllenbourg an.d Patrick J er_mann. 20_1_0' Technology for classroo@ o_r— [25] Lucia Marquez, Valeria Henriquez, Henrique Chevreux, Eliana Scheihing, and
chestration. In New science of learning: Cognition, computers and collaboration in . . X Lo oo
education. Springer. New York. NY. 525-552 Julio Guerra. 2024. Adoption of learning analytics in higher education insti-

[10] Pierre Dﬂiefbougrg ’Luis P Prie,to a’nd Jennif.er K Olsen. 2018. Classroom orches- tutions: A systematic literature review. British Journal of Educational Technol-

0gy 55, 2 (2024), 439-459. https://doi.org/10.1111/bjet.13385 arXiv:https://bera-
journals.onlinelibrary.wiley.com/doi/pdf/10.1111/bjet.13385
[26] University of Michigan. 2024. JupyterLab Pioneer. University of Michigan.
Retrieved July 4, 2024 from https://jupyterlab-pioneer.readthedocs.io/en/latest
[27] Jeffrey M Perkel. 2021. Ten computer codes that transformed science. Nature
589, 7842 (2021), 344-349.
[28] Amir Rubinstein and Benny Chor. 2014. Computational thinking in life science
education. PLoS computational biology 10, 11 (2014), e1003897.
[29] NGSS Lead States. 2013. Next generation science standards: For states, by states.
National Academies Press, Washington, DC. https://doi.org/10.17226/18290
Jupyter Development Team. 2022. Jupyter Events. Project Jupyter. Retrieved
July 4, 2024 from https://jupyter-events.readthedocs.io/en/latest
Jupyter Development Team. 2024. Jupyter Telemetry. Project Jupyter. Retrieved
July 4, 2024 from https://jupyter-telemetry.readthedocs.io/en/latest
[32] Camilo Vieira, Alejandra J Magana, R Edwin Garcia, Aniruddha Jana, and
Matthew Krafcik. 2018. Integrating computational science tools into a ther-
modynamics course. Journal of Science Education and Technology 27 (2018),
322-333.
Austin L. Zuckerman and Ashley L. Juavinett. 2024. When Coding Meets Biology:
The Tension Between Access and Authenticity in a Contextualized Coding Class.
In Proceedings of the 55th ACM Technical Symposium on Computer Science Educa-
tion V. 1 (Portland, OR, USA) (SIGCSE 2024). Association for Computing Machin-
ery, New York, NY, USA, 1491-1497. https://doi.org/10.1145/3626252.3630966

tration. In International handbook of the learning sciences. Routledge, New York,
NY, 180-190.

[11] Barbara J. Ericson, Hisamitsu Maeda, and Paramveer S. Dhillon. 2022. De-

tecting Struggling Students from Interactive Ebook Data: A Case Study Using

CSAwesome. In Proceedings of the 53rd ACM Technical Symposium on Com-

puter Science Education - Volume 1 (Providence, RI, USA) (SIGCSE 2022). As-

sociation for Computing Machinery, New York, NY, USA, 418-424. https:

//doi.org/10.1145/3478431.3499354

Louis Faucon, Jennifer K Olsen, Stian Haklev, and Pierre Dillenbourg. 2020. Real-

Time Prediction of Students’ Activity Progress and Completion Rates. Journal of

Learning Analytics 7, 2 (2020), 18-44.

[13] Robin Flatland, Darren Lim, James Matthews, and Scott Vandenberg. 2015. Sup-
porting CS10K: A New Computer Science Methods Course for Mathematics
Education Students. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (Kansas City, Missouri, USA) (SIGCSE ’15). As-
sociation for Computing Machinery, New York, NY, USA, 302-307. https:
//doi.org/10.1145/2676723.2677274

[14] A. Gajdos, J. Han¢, and M. Hancova. 2022. Interactive Jupyter Notebooks with
SageMath in Number Theory, Algebra, Calculus, and Numerical Methods. In 2022
20th International Conference on Emerging eLearning Technologies and Applications
(ICETA). IEEE, Stary Smokovec, Slovakia, 178-183. https://doi.org/10.1109/
ICETA57911.2022.9974868

[12

'S
=

@
=

&
&

178

https://doi.org/10.1145/3478431.3499379
https://doi.org/10.1145/3478431.3499298
https://doi.org/10.1145/3545945.3569861
https://courdier.pythonanywhere.com
https://doi.org/10.1145/3159450.3159548
https://doi.org/10.1109/TLT.2022.3180588
https://doi.org/10.1145/3478431.3499354
https://doi.org/10.1145/3478431.3499354
https://doi.org/10.1145/2676723.2677274
https://doi.org/10.1145/2676723.2677274
https://doi.org/10.1109/ICETA57911.2022.9974868
https://doi.org/10.1109/ICETA57911.2022.9974868
https://doi.org/10.1145/2839509.2850507
https://doi.org/10.1145/2839509.2850507
https://doi.org/10.1109/FIE43999.2019.9028448
https://doi.org/10.1145/3545945.3569865
https://doi.org/10.1145/3017680.3017711
https://doi.org/10.3102/00346543241241327
https://doi.org/10.3102/00346543241241327
https://arxiv.org/abs/https://doi.org/10.3102/00346543241241327
https://doi.org/10.1145/3159450.3159476
https://doi.org/10.1145/3159450.3159476
https://doi.org/10.1111/bjet.13385
https://arxiv.org/abs/https://bera-journals.onlinelibrary.wiley.com/doi/pdf/10.1111/bjet.13385
https://arxiv.org/abs/https://bera-journals.onlinelibrary.wiley.com/doi/pdf/10.1111/bjet.13385
https://jupyterlab-pioneer.readthedocs.io/en/latest
https://doi.org/10.17226/18290
https://jupyter-events.readthedocs.io/en/latest
https://jupyter-telemetry.readthedocs.io/en/latest
https://doi.org/10.1145/3626252.3630966

	Abstract
	1 Introduction
	2 Related Work
	3 Jupyter Analytics
	3.1 The Jupyter Analytics Dashboard Extension
	3.2 The Telemetry Extension
	3.3 The Server
	3.4 Designing Jupyter Analytics

	4 Implementation and Evaluation
	4.1 Context: University Exercise Sessions
	4.2 Classroom Study 1: Supporting Classroom Orchestration
	4.3 Classroom Study 2: Identifying Collaborative Learning Patterns

	5 Discussion
	5.1 Lessons Learned
	5.2 Conclusion

	Acknowledgments
	References

