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1. Introduction

Computer science and programming play a fundamen-
tal role in our society. There are few aspects of everyday
life that remain untouched by software. We communicate
over email and VoIP, drive in cars with computer-controlled
brakes and engines, relax by playing games on phones, and
navigate through the city using GPS systems. This techno-
logical explosion has created an urgent need for more pro-
grammers. In response to this need, enrollment in computer
science courses has ballooned [2]]. However, even with in-
creased enrollments, there are fears that the US may be short
1,000,000 programmers by 2020 [7].

Consider two approaches to this issue: one practical, the
other aspirational. A practical approach to the issue of need-
ing more programmers has been to broaden computer sci-
ence education to a wider audience using online courses,
coding bootcamps, and increased enrollments at traditional
institutions. However, with massive increases in the num-
ber of students enrolled in a single course it has become
difficult to provide personalized, meaningful feedback and
guidance. There are simply not enough qualified teachers
to work with every student. One way addressing this has
been to build intelligent systems that are capable of provid-
ing personalized, meaningful feedback automatically.

An aspirational approach to this issue has been to fo-
cus on automating computer programming. If software can
be created to write new software, or even to provide engi-
neers with assistance in writing new computer programs,
the needs for 1,000,000 new programmers can be met with-
out drastically expanding the computer science education
infrastructure. This is not a new goal—in 1958 Lisp was
designed in part to make meta-programming easier—but it
remains an important one.

Although it may appear that these two approaches have
little in common, neither can succeed without one thing: a
way of representating computer programs that can be in-
gested and understood by another piece of software. For an
autonomous feedback system to provide meaningful guid-

ance, it must be able to read in and understand student
code to the degree that it can provide suggestions for code
changes, identify bugs, and help solve problems. And like-
wise, an automated programming system should be able to
learn by ingesting existing, well-written code, and without
a way of representing code this is an impossible task.

This paper explores the effectiveness of representing
simple programs as images that can be used to train con-
volutional neural networks. We worked with the code.org
dataset, which contains over 100,000 unique code submis-
sions encoded as abstract syntax trees (ASTs) for two dis-
tinct coding puzzles (HOC4 and HOC18). Each AST was
paired with a unit-test score from -1 to 100 which we used
as supervised labels. We developed six related methods for
encoding abstract syntax trees as images, and compared the
effectiveness of several different convolutional architectures
at predicting the unit-test scores using the different types
of images as data. We achieved a 15% improvement over
a baseline model on HOC4, and a 40% improvement over
the baseline on HOC18. Further examination shows that
the neural architecture is able to achieve consistently high
performance on different graphical encodings as long as the
original AST and image are isomorphic, but struggle to beat
baseline once this isomorphism is broken.

2. Background
2.1. Program Representations

The ability to represent programs in a way that can be
passed as data into an automated reasoning system is an
active area of research. When this is the goal, a natural
starting place is the abstract syntax tree (AST). The abstract
syntax tree representation generalizes across different lan-
guages, and perfectly captures the program’s functionality.
This representation has been used successfully for detect-
ing redundant code in large code bases [1} [12], for detecting
similar code across different languages [3]], and for tracing
the evolution of code over time [8]].

Although operating directly on the AST for a program is



useful for detecting similarity between different programs,
there are situations where the raw AST may be too com-
plex of a representation to be useful. More recently, re-
searchers have attempted to overcome this limitation by pre-
processing ASTs in various ways. Nguyen et al. grouped
ASTs of programs into semantic equivalence classes [9],
where each semantic equivalence class contained ASTs
with different structure but identical function.

An alternative approach to reducing the complexity of
the AST is inspired by recent work in natural language pro-
cessing that recursively parses natural language in-
put and learns vector-space representations of the full text.
A variant of this method is employed by Piech et al. to
construct dense vector representations of ASTs that group
naturally based on functionality [10].

In this paper, we embed ASTs in images, then to use a
variety of deep CNN architectures to classify the images
based on their unit-test scores. This work is inspired by
prior work on image captioning using CNN architectures
[15 [I1]]. CNNs have been able to achieve state-of-the-art
performance on captioning images; a complex task that re-
quires understanding the semantic structure in an image.
Here, we attempt to use the same convolutional architec-
tures that succeed in image captioning to learn the semantic
structure in a visual representation of an AST.

3. Methods
3.1. Data

The data was derived from code.org dataset
(https://code.org/research).  This code.org dataset con-
sists of user interaction data for visitors on the code.org
website who worked on two different programming chal-
lenges. The first programming challenge, HOC4, required
users to build a simple program to help a bird navigate
a maze (Figure [I). The second programming challenge,
HOCI18, was more complex, requiring the use of condi-
tional statements and loops (Figure [Z). The data contains
3630 unique HOC4 ASTs and 56112 unique HOC18 ASTs
from 762,974 unique users. Each code submission is saved
as an AST in a single JSON file. In addition, the unit-test
scores of each AST are provided.

We trained models on each problem separately. To do
so, we separated the HOC4 data into a training set (60%),
a validation set (20%), and a test set (20%), and separated
the HOC18 data into a training set (60%), a validation set
(20%), and a test set (20%).

3.2. Creating Graphical Representations of Ab-
stract Syntax Trees

Since the raw data provided by code.org only contained
ASTs encoded as JSON objects, it was necessary for to
transform the ASTs into images. We wrote a small program
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Figure 1: The code.org graphical programming environ-
ment, challenge HOC4. Users drag programming blocks
onto the canvas to solve the challenge.

do ['if path

do move forward
—

Figure 2: The code.org graphical programming environ-
ment, challenge HOC18. This problem is more complex
than HOC4, requiring the use of a loop and a conditional.

to ingest JSON files and output images 3] Each AST was
transformed into four distinct types of images. All output
images were RGB 250px by 250px. After training models
on each type of image, it was possible to compare each ar-
chitecture on each type of image. This allowed us to learn
more about which features of the image (e.g., indentation,
color) were being used by the model to make predictions.

In the two image categories containing indentation, each
level of indentation represented a deeper level in the AST.
This choice was inspired by common pseudocoding conven-
tions and the Scratch programming language, which uses
a similar graphical representation for programs [6]. Each
unique expression in the language was assigned a distinct
color, with colors chosen using the ColorBrewer2 software
for maximal contrast (colorbrewer2.org). An example of
how the JSON file was transformed into a full-color, text,
indented image can be seen in Figure ]
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Figure 3: The four types of images generated from code.org
ASTs. (a) Full-color, text, and indentation. (b) Full-color,
indentation, no text. (c) Text-only. (d) Blank

wigny vgn,
“children": [{
wigny e,
“children": [
{

h
{

statementList
2¢ moveForward

nigny w1,
“type": "turnLeft"

“"type": "maze_turn"

P

e

H,
“type": "maze_turn"

nigns mgn,
"type": "maze_moveForward"

1

“type": "statementList"

“type": “program"

Figure 4: An example AST with the full-color, text, in-
dented image generated from that AST.

3.3. Grouping Continuous Unit-Test Scores into
Categories

Each AST was paired with a unit-test score ranging from
-1 (i.e., the character ran into the wall) to 100 (i.e., the
character reached the goal with the minimal number of ex-
pressions). We grouped these unit-test scores into six cat-
egories, which allowed us to use cross-entropy loss to im-
prove model stability. The categories were as follows:
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(@ (b)

Figure 5: The distribution of classes in HOC4 (a) and
HOCI18 (b).

e Category 0: The character ran into the wall

e Category 1: The character did not move closer to the
goal

e Category 2: The character moved less than halfway to
the goal

e Category 3: The character moved more than halfway
to the goal

e Category 4: The character made it to the goal with
many extra expressions

e Category 5: The character made it tot he goal with a
small number of expressions

The distribution of categories can be seen in Figure[5] The
non-uniformity of the distribution was partially addressed
in the loss function.

3.4. Models

We initially trained a number of different model archi-
tectures on a subset of the HOC4 data to identify the mod-
els that were able to achieve good performance. We set-
tled on a model of our own design (Vanilla CNN), two
ResNet architectures (ResNet-18 and ResNet-50) [4]], and a
SqueezeNet architecture (SqueezeNet 1.1) [5]]. These mod-
els trained quickly while achieving prediction accuracy on
par with larger, slower models like VGG. Finally, we in-
cluded a baseline model that predicted the most-common
class in the data. The only model with undocumented ar-
chitecture is the Vanilla CNN model. This model contained
a single convolutional layer with a 12x12 kernel with stride
2 and a ReLU nonlinearity and batch normalization, fol-
lowed by three fully-connected layers (size 7500, 300, and
300) each with dropout of 0.3. All models used weighted
cross-entropy loss, with decreased emphasis on categories
2 and 3 which were over-represented in the data (Figure [5).

4. Experiments

We conducted two full experiments, one on the HOC4
data and one on the HOC18 data. Each experiment had the
following goals:



e Achieve the highest possible accuracy on the full-
color, text, and indentation images

e For each model, compare accuracy across the four dif-
ferent image classes

In both experiments, we found that three out of four ar-
chitectures were able to perform significantly better than
baseline. The top-performing model in the first experiment
(HOC4) achieved an accuracy of 75% (compared to a base-
line of 61%), and the top-performing model in the second
experiment (HOC18) achieved an accuracy of 80% (com-
pared to a baseline of 40%). Additionally, we found that
two out of four models were able to achieve comparably
high accuracy on the text-only images ((c) in[3)) and the full-
color, indented images ((b) in . None of the models were
able to out-perform baseline by a significant margin on the
blank images ((d) in[3).

Regardless of architecture, all of the models achieved a
similar accuracy. In an attempt to break this ceiling, we
compared two models on the HOC18 data: a ResNet-18
model trained from scratch and a ResNet-18 model trained
using transfer learning. We found no significant difference
in performance between the model trained from scratch and
the model trained using transfer learning.

4.1. Experiment 1: Predicting Unit-Test Scores for
HOC4

In this experiment we trained four model architectures
(Vanilla CNN, ResNet-18, ResNet-50, and SqueezeNet 1.1)
on the HOC4 data. We first trained models on the full-color,
text, indented images. These images contained the most
information and we hypothesized that the various models
would achieve their highest accuracy on them. Next, we
trained these same architectures on three other types of im-
ages. Each type of image removed one or more pieces of
information from the full-color, text, indented images. For
example, the full-color, indented images removed the text
printed inside of each block (compare (a) to (b) in Figure

3).

4.1.1 Full-color, text, and indentation

We trained four different model architectures on the full-
color, text, indented images for 10 epochs. To com-
pare models, we made predictions on the validation set.
The baseline validation accuracy on the HOC4 data was
59%. Both ResNet architectures achieved performance
well above baseline: ResNet-18 achieved a validation ac-
curacy of 73% and the ResNet-50 achieved a validation ac-
curacy of 74%. However, neither the Vanilla CNN nor the
SqueezeNet 1.1 were able to beat baseline (Figure[6]). Note
that the SqueezeNet 1.1 failed to improve its performance
across 10 epochs.
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Figure 6: Comparing the accuracy curves for the ResNet-
18 (6a), ResNet-50 (6b), SqueezeNet 1.1 (6¢), and Vanilla

CNN @I)

To better compare model performance, we re-loaded the
weights for each model that achieved the best validation ac-
curacy, made predictions on the validation set, and looked
at each model’s confusion matrix. We discovered that both
ResNet models made similar predictions. They were both
good at correctly classifying images from categories 2 and
3, while performing poorly on category 0. Because cate-
gories 2 and 3 contained the majority of the data, by pre-
dicting those two categories correctly both ResNet models
were able to soundly beat the baseline. The SqueezeNet
1.1 model got stuck in a local optimum: always predict-
ing category 2. The Vanilla CNN was somewhere between
the SqueezeNet and the ResNet in terms of its classification
performance (Figure[7).

4.1.2 Comparing model performance across image
categories

After determining that some of the models were able to
learn to predict unit-test scores with significantly higher ac-
curacy than baseline, we tested two of the models on three
other types of images. Each of the image types was created
by removing some information from the full-color, text, in-
dented images.

The first type of image we tested our models on were
the no-text images. The text labels inside each box were
removed, but all of the color and indentation information
remained (Figure [3b). We trained two models on these im-
ages: the ResNet-18 and the Vanilla CNN. The ResNet-18
achieved a validation accuracy of 72% and the Vanilla CNN
achieved a validation accuracy of 0.66%. These accuracies



‘Saueezenet 11: aiaton Contusion Matix Vantia CNN: Vatgaton Cantusion Mt

© (d)

Figure 7: Comparing the accuracy curves for the ResNet-
18 (7a), ResNet-50 (7b), SqueezeNet 1.1 (7c), and Vanilla

CNN @)

were roughly equivalent to the two models’ performance on
the full-color, text, indented images. The validation accu-
racy curves and confusion matrices for these two models on
this data can be seen in Figure[g]
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Figure 8: Comparing the accuracy curves and confusion
matrices for the ResNet-18 and Vanilla CNN (8B

Bd).

The second type of image we tested our models on were
the text-only images. These contained no color or inden-
tation information. The images were little more than white
blocks with text labels stacked on top of one another (Figure

[Bc). We trained two models on these images: the ResNet-18
and the Vanilla CNN. The ResNet-18 achieved a validation
accuracy of 71% and the Vanilla CNN achieved a valida-
tion accuracy of 66%. Again, these accuracies were roughly
equivalent to the two models’ performance on the full-color,
text, indented images. The validation accuracy curves and
confusion matrices for these two models on this data can be
seen in Figure[9]
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Figure 9: Comparing the accuracy curves and confusion
matrices for the ResNet-18 (9a] [Oc) and Vanilla CNN (9B}

Pd).

4.2. Experiment 2: Predicting Unit-Test Scores for
HOC18

In this experiment we trained four model architectures
(Vanilla CNN, ResNet-18, ResNet-50, and SqueezeNet 1.1)
on the HOC18 data. We first trained models on the full-
color, text, indented images. Next, we trained these same
architectures on three other types of images. Finally, we
compared a ResNet-18 model trained using transfer learn-
ing to one trained from scratch.

4.2.1 Full-color, text, and indentation

We trained four different model architectures on the full-
color, text, indented images for 10 epochs. To compare
models, we made predictions on the validation set. The
baseline validation accuracy on the HOC18 data was 43%.
Again, both ResNet architectures achieved performance
well above baseline: ResNet-18 achieved a validation ac-
curacy of 81% and the ResNet-50 achieved a validation ac-
curacy of 80%. However, unlike the HOC4 experiment, the
Vanilla CNN was able to perform admirably, achieving a
validation accuracy of 79%. Finally, the SqueezeNet 1.1



was again unable to beat baseline (Figure [T0). As before,
the SqueezeNet 1.1 failed to improve its performance across
10 epochs. The validation accuracy plot and confusion ma-
trix are omitted for the SqueezeNet.
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Figure 10: Comparing the accuracy curves for the ResNet-

18 @, ResNet-50 @), and Vanilla CNN .

As in the first experiment, we re-loaded the weights for
each model that achieved the best validation accuracy, made
predictions on the validation set, and looked at each model’s
confusion matrix. Although the differences are subtle, the
Resnet-18 model appeared to be correctly classifying im-
ages from all categories except category 0. The ResNet-50
and Vanilla CNN struggled on categories 4 and 5 more than
the ResNet-18. (Figure[TT).

4.2.2 Comparing model performance across image
categories

As in the first experiment, we tested two of the models on
three other types of images. Each of the image types was
created by removing some information from the full-color,
text, indented images.

The first type of image we tested our models on were the
no-text images. We trained two models on these images: the
ResNet-18 and the Vanilla CNN. The ResNet-18 achieved a
validation accuracy of 81% and the Vanilla CNN achieved
a validation accuracy of 71%. Like the first experiment, the
ResNet-18 model was able to achieve identical performance
despite the fact that the color and indentation information
had been removed. The Vanilla CNN was able to beat the
baseline, but was unable to match its performance on the
full-color, text, indented images. The validation accuracy
curves and confusion matrices for these two models on this
data can be seen in Figure 12}
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Figure 11: Comparing the confusion matrices for the

ResNet-18 (@, ResNet-50 @), and Vanilla CNN .
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Figure 12: Comparing the accuracy curves and confusion
matrices for the ResNet-18 and Vanilla CNN

(125} [2).

As in the first experiment, the second type of image
we tested our models on were the text-only images. The
ResNet-18 achieved a validation accuracy of 82% and the
Vanilla CNN achieved a validation accuracy of 80%. There
was no drop in accuracy for either model despite the fact
that all the color and indentation information had been re-
moved. The validation accuracy curves and confusion ma-
trices can be found in Figure [[3]
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Figure 13: Comparing the accuracy curves and confusion
matrices for the ResNet-18 (134 and Vanilla CNN

(559,

4.2.3 Comparing Transfer Learning to Training from
Scratch

In order to try and achieve an accuracy above 81%, we
attempted to use transfer learning. In order to do so, we
downloaded pre-trained weights for the ResNet-18 model
and only performed gradient descent on the weights in the
final fully-connected layer. After training this model for 15
epochs, the accuracy rose from 53% to 57%. We then con-
tinued training all of the weights in the model. The accuracy
improved from 57% to 81% (Figure [I4).

(@) (b)

Figure 14: Accuracy achieved by the ResNet-18 model
loaded with pre-trained weights. The accuracy topped out at
57% while only training the final layer (T4a) and achieved
over 80% when all the weights were trained (T4b).

Although the model trained using transfer learning was
unable to achieve a higher accuracy than the model trained
from scratch, we were curious to know if there was a differ-
ence in the distribution of predictions between models. It
could have been possible that the model initialized with pre-

trained weights would recognize a different set of features,
resulting in a different distribution of predictions. However,
when we compared the confusion matrices for each model,
we found that they were nearly identical (Figure[T3)).
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Figure 15: Comparing confusion matrices on the ResNet-18
model trained from scratch and the ResNet-18 model

trained using transfer learning (I5b).

5. Discussion

Our goal in this study was to determine if it was possi-
ble to learn to predict unit-test scores for simple programs
if those programs were encoded as images. We ran two ex-
periments on two different coding challenges, and in both
cases we found CNNs that were able to significantly beat a
baseline. In the first experiment, the best model was able to
beat the baseline by 15%, and in the second experiment the
best model was able to beat the baseline by nearly 40%. We
also performed a set of experiments on images with infor-
mation removed. We found that even when all indentation
and color information was removed from the images, there
was little to no degradation in perfromance. Furthermore,
when the image and color information was kept and the text
information was removed, again there was no degradation in
performance. This demonstrated that the CNNs were able
to flexibly learn different sets of features (in one case, text,
and in the other, color and indentation) with no degradation
in performance.
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