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ABSTRACT
Algorithms deployed in education can shape the learning experi-
ence and success of a student. It is therefore important to under-
stand whether and how such algorithms might create inequalities
or amplify existing biases. In this paper, we analyze the fairness
of models which use behavioral data to identify at-risk students
and suggest two novel pre-processing approaches for bias mitiga-
tion. Based on the concept of intersectionality, the first approach
involves intelligent oversampling on combinations of demographic
attributes. The second approach does not require any knowledge
of demographic attributes and is based on the assumption that
such attributes are a (noisy) proxy for student behavior. We hence
propose to directly oversample different types of behaviors iden-
tified in a cluster analysis. We evaluate our approaches on data
from (i) an open-ended learning environment and (ii) a flipped
classroom course. Our results show that both approaches can miti-
gate model bias. Directly oversampling on behavior is a valuable
alternative, when demographic metadata is not available. Source
code and extended results are provided in https://github.com/epfl-
ml4ed/behavioral-oversampling.

CCS CONCEPTS
• Social and professional topics → User characteristics; • Ap-
plied computing → Education; • Computing methodologies
→Machine learning; Supervised learning.
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1 INTRODUCTION
Algorithms deployed in an educational context have the power
to shape a student’s future both on a small and large scale. These
algorithms can for example help students understand a scientific
concept [10], provide assistance for teachers in grading assignments
[13], or support educators in identifying struggling students early
[33]. In a world where education is already unfair or biased towards
certain communities [5, 20, 29, 34], it is particularly important
to understand whether and how the algorithms we deploy might
perpetuate or even amplify existing inequalities [3, 18]. In this
paper, we therefore analyze the (un)fairness of models that adopt
behavioral data to identify at-risk students and explore methods
for remediating the biases that led to unfairness.

Gender, socio-economic background, cultural background, and
country have all been found to be linked to individuals’ learning
strategies and expectations towards education (e.g., [2, 26]). par-
ents’ socio-economic and cultural background are related to school
completion and academic performance [17], and country is linked
to students’ metacognition of academic achievement [17]. Demo-
graphic differences such as these can be problematic for machine
learning algorithms. In the case where datasets are imbalanced
in favor of one demographic attribute (e.g., gender), the model
may over-focus on the idiosyncratic characteristics of the over-
represented group, leading to better predictions for that population
while also making worse predictions for other under-represented
groups. This is particularly problematic when demographic groups
who are under-represented in the data are also under-represented
in society (and protected for instance by anti-discrimination leg-
islation), as a model’s worse performance for these groups might
amplify existing societal biases. An example of one suchmodel is the
algorithm developed to predict students’ prospective GCSE grades
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in the UK during the pandemic [32]. Around 40% of the students
were downgraded compared to their teachers’ predictions, and a
majority of them were disadvantaged students. Yet, wealthier and
more privileged students tended to benefit from that model. Due
to these risks, investigations into algorithmic fairness have perme-
ated nearly all areas of the artificial intelligence field [24, 27]. This
research aims to formalize the notions of algorithmic unfairness, to
develop methods of identifying when algorithms are unfair, and to
develop bias mitigation methods in pre-, in-, and post-processing.

In this paper, we investigate the fairness of models for the early
detection of at-risk students using behavioral data. In recent years,
a number of biases have been uncovered in student success predic-
tion models [3, 18, 24], and a variety of mitigation methods have
been put forward [11, 35, 36]. Pre-processing approaches that over-
sample based on both demographic attributes and outcomes have
led to improved model fairness [22, 28]. These approaches have
targeted a representation bias, where a part of the population is
under-represented [1]. The common approach is to identify demo-
graphic imbalances in the data and to oversample the data in these
categories to create a more balanced training dataset. For example,
[28] found that oversampling on gender and race reduced disparate
impact, while [30] showed that re-balancing demographic groups
by taking into account ground truth labels reduced the disparate
impact.

While these approaches are promising, they are also general.
We have identified two novel pre-processing approaches that are
better tailored to the educational context as well as to the data and
modeling approaches used in the at-risk detectors. The first, guided
demographic oversampling, involves oversampling on combinations
of demographic attributes instead of simply oversampling on a
single category. The second, behavioral oversampling, starts by
identifying behavioral learning profiles, and then upsamples the
profiles which are under-represented in the data.

Instead of oversampling on a single attribute such as gender, race,
or geographic location, guided demographic oversampling involves
first splitting the data into smaller buckets which represent combi-
nations of attributes (e.g., female-high-SES, male-high-SES, female-
low-SES, male-low-SES) and then upsampling under-represented
groups in order to re-balance representation among these combined
categories. This approach is inspired by the concept of intersec-
tionality originally introduced by [8] to describe how the forms of
discrimination faced by Black women cannot be reduced to those ex-
perienced by either Black people or women. Applied more broadly,
intersectionality describes how unique forms of bias emerge from
the interaction of intersecting identities. Following this line of rea-
soning, when attempting to mitigate algorithmic bias there may be
value in oversampling subgroups containing students with inter-
secting identities, as opposed to more standard techniques which
only oversample on individual attributes.

The second approach that we introduce is behavioral oversam-
pling. It sidesteps issues related to demographic oversampling by
focusing instead on attaining a balanced representation of student
behaviors in the data. The models used for detecting at-risk stu-
dents are trained on time-based sequences of behavioral data and
learn to identify patterns of behavior that are associated with a
higher probability of getting a low grade, failing, or dropping a
course.When demographic oversampling is successful at mitigating

bias, this is likely because certain under-represented demographics
exhibit behaviors that can be associated with various outcomes.
Through oversampling, we force the model to pay more attention to
these behaviors allowing it to make more accurate and less biased
predictions for these under-represented groups. While demograph-
ics may serve as a reliable proxy for under-represented behaviors
in many cases, this relationship might not always hold [21]. In
these situations, demographic oversampling will have little effect
on mitigating biases, because under-represented behaviors are not
confined to a single demographic group.

Behavioral oversampling has the potential to bypass this problem.
Rather than using demographic attributes as proxies for learning
strategies, we propose to oversample directly on learning behaviors.
This approach has the additional advantage that it works in the
absence of access to demographic attributes which are not always
easy to obtain. Our approach extends [35]’s work who used clusters
and borderline SMOTE to re-balance datasets through a pipeline
which relies on time series data points and random oversampling on
the full data to balance behavioral educational datasets. We evaluate
both proposed approaches on models which use behavioral data to
identify at-risk students in two vastly different learning contexts: a
flipped classroom course and an open-ended learning environment.
Specifically, we aim to answer three research questions: 1) What bi-
ases do we find in early prediction models and how are they related
to demographic under-representation? 2) To what extent can over-
sampling on combined attributes (guided attribute oversampling)
reduce unfairness of at-risk detectors, especially in comparison to
single-attribute oversampling? 3) Does oversampling on behavioral
clusters (behavioral oversampling) help to reduce unfairness, and
how does it compare to demographic oversampling? Our results
show that biases in early prediction models are not necessarily
related to an under-representation of a demographic attribute and
that combinations of attributes constitute a more reliable proxy of
learning behavior. Moreover, our findings show that biases can be
mitigated using solely behavioral data.

2 DATA AND METHODS
Our goal in this paper is to study (i) the extent to which success
prediction models might lead to disparate outcomes across demo-
graphic groups and (ii) how such disparities can be reduced by
acting on the representation of groups in the training data via de-
mographic and behavioral oversampling. Following the pipeline
in Figure 1, we first collected students’ data under two different
instructional strategies namely flipped classroom and open-ended
exploration. For each instructional strategy, we then extracted a
range of behavioral indicators found relevant in prior learning
analytics work. With these indicators, we created student success
models and identified relevant clusters of students according to their
behavior in the activity. Subsequently, we performed an exploratory
analysis to assess disparities according to demographic groups and
behavioral groups created based on the identified clusters. We fi-
nally investigated the extent to which different combinations of
demographic and behavioral oversampling techniques can mitigate
the disparities.
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Figure 1: Biasmitigation framework: we extract interaction data from aflipped classroom and open-ended learning environment
(OELE) context to build learning indicators. These indicators serve as an input for the at-risk detectors as well as for the
clustering algorithm. In the bias mitigation part, we analyze the bias of the success predictions in detail and perform a guided
attribute oversampling based on imbalances detected in the data set. Furthermore, we also oversample based on the profiles
identified in the clustering part.

2.1 Modeling Student Learning
Student success models are becoming popular in education for a
variety of tasks such as adaptive intervention and learning un-
derstanding. Indeed, flipped teaching and open-ended exploration
are two relevant instructional strategies that can adopt student
success models for the above purposes. The next subsections will
describe the real-world learning contexts considered in our study
where teaching and learning were based on the above instructional
strategies.
Flipped ClassroomContext. Flipped classroom is a course format
where students are required to study and learn on top of a certain
amount of material as a preparation for class. Usually, course mate-
rial is shared on a learning platform. Students then come to class
and engage in learning activities in small groups with and without
the instructor.
Tracking Student Learning. Our analysis was based on pre-class
activities pertaining to a compulsory Linear Algebra (LA) under-
graduate course (Table 1, first row) delivered in a flipped classroom
setting by a large European university. Pre-class activities were
performed on an instance of the Open edX platform where the
instructor asked students to watch videos and complete quizzes
of an already existing Linear Algebra MOOC. Students had access
to pre-recorded videos and they had the opportunity to test their
competencies through short quizzes after a sequence of videos. Fur-
thermore, they could read and download slides or any additional
material the instructor provided for the topic.

The log entries collected by the platform were tuples reporting
the user, the activity, and the timestamp (e.g., user: 10, activity: play
video 32, timestamp: 05-03-2018 12:06:01). The data set was collected
from two consecutive flipped editions of the course, taught by the
same lecturer and with a flipped duration of 10 weeks. Success of
students was modeled using the grade of the final exam. Specifically,
we aimed at predicting students’ intervention need and therefore
used the label 1 for students failing the exam (and thus needing
intervention) and the label 0 for students who passed the exam
(and consequently, there was no intervention need). We also had
access to students’ self-reported gender and the country of origin

of their high school diploma as this information has been shown
to correlate with prior knowledge by previous work [9]. The study
was approved by the institutional ethics review board (HREC 058-
2020/10.09.2020).
Learning Indicators. A large body of work has focused on engineer-
ing learning indicators for success prediction in online or blended
settings. In a recent meta-analysis, [23] built a combined set of
learning indicators retrieved from relevant previous work and sys-
tematically assessed their effectiveness for success prediction across
different online and blended courses. The learning indicators that
they found most effective are related to students’ self-regulated
learning behavior. Self-regulated learning (SRL) characterizes the
ability of a student to be responsible of their own learning and has
been widely investigated in online learning settings (e.g., [6, 31]).
Based on a meta-analysis on SRL for online higher education [4],
we categorize the learning indicators into the following three di-
mensions (that are associated with academic achievement): time
management (ability to plan study time and tasks), effort regulation
(persistence in learning), and metacognition (awareness and control
of thoughts). Learning indicators related to time management mea-
sure the distribution of students’ effort throughout the entire course
(Consistency), the extent to which students regularly reserve time
to study (Regularity), and the students’ tendency to follow the
course (Proactivity). Learning indicators categorized into effort
regulation measure students’ engagement and persistence during
the course (Effort). Finally, learning indicators belonging to the
metacognition dimension assess students’ self-assessment abilities
(Assignment) as well as how they control the learning flow within
a certain content (Control). The self-regulated learning indicators
identified as important by [23] for the context of flipped classrooms
have also been shown to be predictive for a large set of MOOCs [33].
We hence used the suggested indicators of SRL behavior as a basis
for our success prediction and profile identification. Specifically, we
represented each student’s interaction sequence by a time series
of 14 data points (one for each week), where each data point was
represented by an 82-dimensional vector, and each of those 82 cells
attempted to capture in different ways one of the six SRL aspects
described above.
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Table 1: Learning contexts. Detailed information about the flipped and open-ended environments targeted by our study.

Course Title ID Field Setting Students Level Language Duration Failing Rate Demographics1

Linear Algebra LA Mathematics Flipped course 191 BSc English 10 weeks 42% F: 35%, M: 65%; CO: 49%, CF:47%
Tuglet Tuglet Science Educational game 264 Middle School English ≤ 15. min 47% F: 48% M: 51%; H: 52%, M:48%

1 Demographics GF : Female ; GM : Male; CO : Original Origin; CF : Foreign Country, H: district with high socio-economical status (SES), M: district with medium SES.

Behavioral Profile Identification. To identify behavioral profiles, we
relied on [25]’s work, which used the above learning indicators to
cluster students for the LA course into groups with similar SRL
behavior. They proposed a multi-step clustering pipeline where
they first clustered students separately for each SRL dimension.
Then, they integrated the resulting behavioral patterns into multi-
dimensional profiles. They obtained five distinct SRL profiles for
the LA course and showed that these profiles were associated with
learning outcomes. Students in profile ’E’ worked consistently dur-
ing the semester, reserved regular time slots for learning, were
in-sync with the course level and exhibited a high level of metacog-
nition. Students in profile ’D’ showed a very similar SRL behavior
to profile ’E’, with the only difference being that they were delayed
in submissions with respect to the course schedule. Profile ’C’ dif-
fered from profile ’E’ also in only one dimension; students in this
profile were much more engaged (higher effort). Students in profile
’B’ had a mixed SRL behavior. While they showed a high level of
metacognition, they struggled with time management. Finally, stu-
dents in profile ’A’ struggled in all dimensions. They were not very
engaged, did not work consistently and regularly, were delayed in
their coursework, and showed a low level of metacognition. All
profiles are described in [25].
Success Prediction. Recent work has suggested a series of models
for student success prediction in online and flipped setting. Since
we were interested in predicting intervention needs (rather than
success), in the following we will denote our model as an at-risk
detector. For our study, we relied on the neural architecture based on
Bidirectional LSTMs proposed by [33]. The architecture is composed
of two simple BiLSTM layers of size 8 (using a lookback of 3) and a
Dense layer (with Sigmoid activation) having a hidden size of 1. The
indicated hyperparameters have been found using a nested student-
stratified (i.e. dividing the folds by students) 10-fold cross validation.
Open-Ended Exploration Context. Over the last decade, there
has been an increase in the use of open-ended learning environ-
ments (OELEs) such as educational games or simulations. However,
many students struggle in efficiently doing problem-solving and
inquiry in these environments [7, 14]. Modeling students’ learning
as they try to benefit from OELEs may be a useful next step in
educators’ abilities to support students’ development of exploration
strategies. Tracking Student Learning. Our study was based on
TugLet [15], an interactive game for assessing students’ inquiry
strategies. The game revolves around a tug-of-war between two
teams composed of figures of different strengths (large: 3, medium:
2, small: 1). Players can choose between two different modes: in
Explore mode, they can simulate different compositions of teams
and observe the outcome of the tug-of-war. In Challenge mode,
they have to predict the outcome of a given tug-of-war and re-
ceive right/wrong feedback. If they make a mistake, they are sent

back to theExplore mode. They are, however, free to return to Chal-
lenge mode at any point in time. The game is over when the player
manages to predict the outcome of eight tug-of-wars (of increasing
difficulty) correctly in a row. After that, a post-test assesses whether
the players have learned the relationships between the strengths
of the different figures. We used students’ posttest score to model
success in the game. We aimed at predicting intervention need
and therefore used the label 1 (0) for students with a low (high)
posttest score and thus needing (not needing) intervention. TugLet
was equipped with a logging system which recorded all the trials
made in Explore and Challenge along with their correctness (for
Challenge mode only) and a time stamp. The data used in this study
was collected in a classroom experiment in two different North
American middle schools with a total of 365 students. The first
school had a medium socio-economic status (SES) while the latter
had a medium to high SES. We also collected the gender of the
students. The study was approved by the institutional ethics review
board (HREC 060-2020/04.09.2020).
Learning Indicators. The open-ended nature of the tasks in OELEs
makes representing and predicting student success a challenge. We
relied on prior work to build the learning indicators of TugLet. [15]
modeled students’ exploration strategies in combination with the
correctness of their answers to predict student success in TugLet.
Specifically, they formalized the principles that the students could
learn through the game using a set of ’rules’. These rules cover
the logic of the whole game. Example rules are: ’a large figure (3)
is stronger than a medium figure (2)’ or ’a large figure (3) is as
strong as a medium (2) + a small figure (1)’. Each trial was then
characterized by attaching the set of rules needed to predict the
winning side. More importantly, the quality of the trial can be
determined by the size of the rule set. For example, a trial with a
large rule set is considered as weak, as a large rule set indicates
a complex team composition, which does not allow drawing any
conclusions about the relationship between the strengths of the
different figures. A trial with only one associated rule is considered
as strong its simplicity means that the relationships can be directly
derived. [15] demonstrated that exploration quality (measured by
the size of the rule set) was related to achievement in the posttest.
Given these learning indicators, we represented each student in our
dataset by a sequence of 𝑛 points where 𝑛 denotes the total number
of trials of that student. Each of these data points captured the
game mode, rule set associated with the trial, team compositions,
winning team, time taken to simulate/predict, and trial correctness
(if in Challenge mode).
Behavioral Profile Identification. In order to identify the behavioral
profiles for TugLet, we derived on the clusters identified by [16].
They used the rules and exploration quality metric described above
to build three time series features for each student: the cumulative
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number of Explore trials up to a specific point in the game, the cu-
mulative number Challenge trials up to a specific point in the game,
and the cumulative number of Explore trials classified as strong up
to a certain point in the game. They used k-means clustering on
these indicators and found six different profiles characterized by
exploration behavior and efficiency in passing the game. The first
three clusters all passed the game fast. The systematic explorers
utilized inquiry processes in order to uncover the principles of the
game. The explorers also used inquiry, but were less systematic.
The non explorers did not simulate a single team composition,
but tried to pass the game via trial-and-error in Challenge mode.
The second three clusters took a long time to pass the game. The
slow explorers simulated many team compositions without any
system. The slow passers did not use simulation at all. Themixed
explorers simulated some team compositions. The interpretation
of such profiles can be found in [16].
Success Prediction. Recent work has successfully applied LSTMs to
predict student success in an OELE [7]. We hence adopted LSTMs
using students’ interaction sequences represented as a series of tri-
als as an input. Each trial is described by the gamemode, the rule set
associated with the trial, the team compositions, the winning team,
the time taken to simulate/predict, and the trial correctness (if in
Challenge mode). The architecture is composed of one LSTM layer
of size 32 and a Dense layer (with Sigmoid activation) having a hid-
den size of 1. We used a dropout of 0.02. The hyperparameters have
been found using a nested student-stratified (i.e. dividing the folds
by students) 10-fold cross validation. Again, we will also denote
this model as an at-risk detector as we are predicting intervention
needs (rather than success).

2.2 Unfairness Diagnosis and Treatment
In the case where the predictors are found to provide biased pre-
dictions, we attempt to mitigate the resulting unfairness by re-
balancing the dataset using random oversampling with replacement.
In the rest of this section, we define and formalize our notion of bi-
ased predictions. Then, we motivate and detail the process by which
we create the groups we oversample on which is the main contri-
bution of this work. Finally, we lay out the actual oversampling
process.
Unfairness Assessment. Extensive work has been conducted
on designing metrics with the purpose of capturing the different
unfair behavior that can occur in machine learning scenarios. Un-
fortunately, some of the fairness principles have been translated
into metrics which cannot be simultaneously satisfied [19]. Conse-
quently, to identify the fairness principles we want to prioritize, it
is important to identify where the biases may occur and estimate
their short- and long-term impact on students. In this study, we aim
to support students at risk of failure by suggesting targeted reme-
dial interventions before the final evaluation of the topic at hand.
Therefore, it is essential to identify all students at risk of failing by
reducing false negative rates (FNR) taking into account that some
students might be offered unnecessary support (the false positives).
Additionally, we aim to mitigate biases when identifying at-risk
students and consequently we focus on reducing the differences in
FNR between the different classes determined by a certain attribute
𝑜 .

Unfairness Treatment. As previously discussed, demographic
attributes such as gender and the country of education are typically
related to students’ learning behaviors. These differences across
demographic characteristics can be problematic when models are
being built and trained on behavioral features. In the case where
the data sets are imbalanced towards one demographic attribute,
the model will tend to over-focus on the idiosyncratic behavioral
characteristics of that group,- while ignoring different behaviors ex-
hibited by under-represented groups. One way of ameliorating this
undesirable behavior is to ensure that the dataset used to train the
model contains an equal representation of the different groups in
the population. This is typically achieved through oversampling the
under-represented groups in order to achieve a more balanced train-
ing data set. Prior work on bias detection and mitigation in early
detection models has found success using generic oversampling
techniques such as oversampling under-represented demographic
groups [22] and oversampling on a combination of demograph-
ics and outcomes [30]. We hypothesize that these general methods
have weaknesses that are specific to the domain of early detection of
student failure using behavioral data. To address these weaknesses,
we propose two new methods for oversampling that are better tai-
lored to the domain: guided demographic oversampling and
behavioral oversampling.
Guided Demographic Oversampling. Common approaches to over-
sampling on demographic attributes start by identifying algorithmic
biases that affect under-represented groups and then proceed by
oversampling data points from these groups when constructing the
training dataset [28, 30]. There are two issues with this approach:
a practical one and a theoretical one. The practical issue is that
this approach cannot be used when the data set is already balanced
with respect to demographic attributes. The theoretical issue is
that oversampling on a single demographic attribute does not take
intersectional biases into account. Intersectional biases are those
that affect people with specific combinations of demographic at-
tributes such as women from a specific country or men from low
socio-economic backgrounds.

Guided demographic oversampling is designed to address both
of these issues. Formally, let 𝑜 be an attribute on which an algo-
rithm is biased. Then, we assume that the different classes of 𝑜 are
either imbalanced, or that the bias is caused by an interaction of
𝑜 with another attribute. Concretely, if an at-risk detector works
better for one gender than for others, the likely cause is either that
the number of individuals varies across genders or that the num-
ber of individuals varies across groups which are defined by their
gender and another attribute. To investigate these bias-imbalances
systematically, we first investigate whether there are imbalances in
standalone attributes. Standalone attributes with imbalanced classes
are added to the set O. Then, if an attribute on which the detectors
are biased is naturally balanced, we investigate whether combina-
tions of attributes create imbalanced groups. When that is the case,
we add that combination of attributes to O. By doing so, O will
contain all the combinations of attributes that lead to the creation
of imbalanced groups. For each of the attributes or combination
of attributes 𝑎 in O, we oversample the under-represented groups
to create a more balanced data set, and then continue training the
early detection models as usual.
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Behavioral Oversampling. Though we hypothesize that guided at-
tribute oversampling can have an impact on fairness, there are two
issues that this method does not address. The first issue is a practical
one, which is that demographic information is not always available,
and that when it is available it sometimes cannot be used for ethical
reasons or because of data-protection laws. A more fundamental
issue is that oversampling on demographic information assumes
that demographic attributes are proxies for behavioral patterns. If
an early detection model trained on behavioral data exhibits bias
against a demographic group that is under-represented in the data,
one explanation is that this group exhibits idiosyncratic behaviors
that the model is unable to pick up on. When data from this group
is oversampled, this has the effect of amplifying these idiosyncratic
behaviors, allowing the model to learn the associations between
them and educational outcomes. However, the assumption that the
members of under-represented demographic subgroups all exhibit
similar and idiosyncratic behaviors is strong, yet in many situations
unlikely to hold.

We introduce behavioral oversampling in response to these is-
sues. The first step is to identify groups of students which exhibit
similar patterns of behavior. Here, we cluster students in behavior
space, though other approaches may be valid as well. More formally,
we use the learning profiles implemented by [16] for TugLet and
the profiles identified by [25] for flipped classrooms as the behav-
ioral groups we consider for oversampling. We then investigate the
balance of the clustering solution. An imbalance in cluster sizes
indicates that some learning behaviors are under-represented in
the data and we hence oversample these groups to construct a more
balanced training dataset, and then continue training the at-risk
detectors.
Oversampling Techniques. To re-balance the classes (clusters), we
apply different methods which all use random oversampling as
implemented in imbalanced-learn [22]. These methods are de-
scribed below:

• Equal Balancing re-balances equally each class defined
by 𝑜 (sampling_strategy=’all’ in imbalanced-learn). The
instances chosen to upsample are randomly selected with
replacement [22, 30].

• Majority Oversampling upsamples the majority class as
defined by 𝑜 by 50%. Because of the small dataset sizes, over-
sampling on very small categories might introduce noise,
while oversampling on the majority may increase the signal
in the training set [12]. This oversampling parameter is used
for binary cases to boost the signal in the dataset. For more
classes, only oversampling one group has a lesser effect.

• Cascade Oversampling upsamples each class defined by
𝑜 gradually such that any of these classes gets upsampled
to the size of the smallest larger class. For example, if class
𝑜1 is of size 7, class 𝑜2 is of size 15 and class 𝑜3 is of size 3,
then 𝑜2 remains the same as it is the largest one, 𝑜1 is upsam-
pled to 15, and 𝑜3 is upsampled to 7. Similarly to majority
oversampling, cascade oversampling amplifies the signal in
the dataset, while augmenting the visibility of the under-
represented class without introducing too much noise or
too many similar individuals in the training. We apply this
technique to datasets with binary classes.

• MinorOversampling upsamples theminority classes to the
number of instances present in the majority class. When the
minority class contains less than 10 samples, we upsample
the second smallest class of the dataset to avoid the intro-
duction of noise by constantly repeating the same samples
[22].

• Within Oversampling only applies when oversampling on
a combination of attributes. Then, a main attribute is chosen
(in our case it is always the clusters) and the other attributes
are first rebalanced within their main attribute before rebal-
ancing the main attributes. For example, let behavior and
gender be the attributes by which we want to oversample, let
𝐴 and 𝐵 be the existing clusters, and let 𝑡 and 𝑑 be the gen-
ders people identify with in our dataset. Let the distribution
of the data be as followed: |𝐴∩𝑡 | = 12, |𝐴∩𝑑 | = 8, |𝐵∩𝑡 | = 6
and |𝐵 ∩ 𝑑 | = 4. Then, when oversampling in a within man-
ner, we first rebalance gender within the intervention need
groups and obtain: |𝐴 ∩ 𝑡 | = 12, |𝐴 ∩ 𝑑 | = 12, |𝐵 ∩ 𝑡 | = 6 and
|𝐵 ∩ 𝑑 | = 6. We then use those freshly oversampled groups
to once again re-balance the intervention need groups such
that |𝐴| = 24 and |𝐵 | = 24.

Particularly, we re-balance the training set at each fold according
to one of those three methods. Because we cannot risk develop-
ing an algorithm that appears "fair" during training but in fact is
not on our test set, we first run all five manners of oversampling
before choosing that with the lowest difference of false negative
rates across classes. Specifically, we compute the average of 1) the
difference in FNR between the two genders, 2) the average in FNR
between the two geographical attributes, and then pick the one
with the lowest mean. If the FNR rate of the chosen configuration
is much higher (15%) than the original one, we look into the second
lowest average and see if the trade off is worth it or not.

3 EXPERIMENTAL EVALUATION
We conducted experiments in both the flipped classroom and OELE
context to study (i) the extent to which success prediction model
might lead to disparate outcomes across demographic groups and
(ii) how such disparities can be reduced via demographic and behav-
ioral oversampling. In the following, we discuss the experimental
setup, before detailing out the results of our bias investigation,
attribute oversampling, and finally behavioral oversampling.

3.1 Experimental Setup
The predictions of the at-risk students’ detectors build the basis
of our bias investigation and mitigation. In our experiments, we
first trained and tested the original detectors (baseline) on their
respective data sets. We then also trained and tested the detec-
tors for the guided attribute oversampling as well as the behavioral
oversampling.

For all three settings, we used a 10-fold student stratified cross
validation to evaluate the accuracy and fairness of the model. We
did not perform any hyperparameter tuning, but used the hyperpa-
rameters optimized for the original detectors (see Section 2). The
stratification was performed on the predicted label (1: needs inter-
vention, 0: no intervention needed). Predictive performance was
evaluated using the area under the ROC curve (AUC). We used the
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AUC as a performance measure as it is robust to class imbalance.
Furthermore, as described in Section 2.2, we analyze the differences
in the false negative rate (FNR) as a fairness metric. In our report-
ing, we exclude categories of attributes which contain less than ten
representatives (they were, however, included in the model training
and performance evaluation). In the guided attribute oversampling,
we investigated the gender, geographical dimension, and pass-fail
label. We used the learning profiles identified through clustering
[16, 25] as a basis for the behavioral oversampling.

3.2 RQ1: Bias Investigation
In a first analysis, we were interested in analyzing differences in
FNR with respect to the investigated attributes and to combinations
of these attributes for both learning contexts. Though we focus on
false negative rates because we prioritise retrieving all students
requiring help, we also investigated false positive rates (FPRs) in
our experiments. For conciseness, FPRs are provided in our Github
repository ("Reports" folder). Previous work in different learning
contexts suggests that model unfairness towards a group with spe-
cific demographic attributes is the result of an under-representation
(here established with a 15% difference in representation compared
to the majority) of this group in the data set [28, 30]. The TugLet
data set is almost balanced in terms of gender (males: 51% , females:
48%, see also Table 1) and SES (School M: 48% , School H: 52%,
see also Table 1), and we therefore hypothesized that the at-risk
detector for TugLet would be fair with respect to these attributes
(H1-1). In the flipped classroom context, we observed an under-
representation of females (males: 65% , females: 35%, see also Table
1), while the data set was balanced in terms of country of diploma
(Country CF: 47% , Country CO: 49%, see also Table 1). We therefore
hypothesized that the at-risk detector for the flipped context would
be fair with respect to the country, but might disadvantage female
students due to their under-representation in the data set (H1-2).

Table 2 illustrates the overall accuracy in terms of AUC as well as
the FNR per demographic attribute for the baseline at-risk detector.
For TugLet, we observe that the detector exhibits a higher FNR for
students from School H (𝐹𝑁𝑅 : 0.73) than for students from School
M (𝐹𝑁𝑅 : 0.57). Students from School H are therefore less likely to
receive intervention when needed. Similarly, the at-risk detector
disadvantages males (𝐹𝑁𝑅 : 0.70) who are less likely to be iden-
tified at-risk when struggling than females (𝐹𝑁𝑅 : 0.53). For the
flipped classroom data set, we also observe differences in FNR across
demographic attributes. The detector is more likely to fail identi-
fying students needing intervention when they have a diploma
from Country CF (𝐹𝑁𝑅𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝐶𝐹 : 0.58, 𝐹𝑁𝑅𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝐶𝑂 : 0.42).
In terms of gender, females were disadvantaged by the detector
(𝐹𝑁𝑅𝑚𝑎𝑙𝑒 : 0.43, 𝐹𝑁𝑅𝑓 𝑒𝑚𝑎𝑙𝑒 : 0.56).
To summarize, we observed differences in FNR for both learning con-
texts. While the TugLet data set was balanced in terms of demographic
attributes, the at-risk detector still disadvantaged students with spe-
cific attributes and we can therefore rejectH1-1. In the flipped context,
the under-represented group (females) is indeed disadvantaged, but
the detector also shows bias with respect to the country. We therefore
partially accept H1-2.

3.3 RQ2: Attribute Oversampling
In a second analysis, we investigated the bias of the detectors in
both learning contexts in more depth, with the goal to smartly
upsample the data sets based on observed interactions between
combinations of attributes.
TugLet. In our first analysis, we found biases in the detector even
though the data set was balanced with respect to gender and SES.
We therefore performed more detailed analyses of the interaction
effects between combinations of demographic attributes and inter-
vention needs (ground truth labels). We observed that the dataset
was also balanced with respect to combined attributes, i.e. the com-
bination of gender and SES of school district (males-School M: 26%,
males-School H: 25%, females-School M: 22%, females-School H:
26%). Finally, also the ground truth labels were almost balanced
(label 1: 53%, label 0: 47%). We did, however, find an interaction
between the intervention need and demographic attributes. 58%
of the students needing intervention came from school M (ground
truth label 1). There was also a smaller imbalance of intervention
needs with respect to gender; female students tended to need inter-
vention more often the male students (45% of the students needing
intervention were males). Overall, these led to an imbalance in in-
tervention need also across combined attributes: from the students
needing intervention, 15% were females from school M, 24% were
males from school M, 30% were females from school H, and 30%
males from school H. We therefore hypothesized that the bias in the
detector stemmed from the interaction effect between the gender,
SES, and intervention need, and that we could therefore mitigate
this bias by upsampling on the full combination of attributes (H2-1).

To test our hypothesis, we added the combinations gender-
intervention need, school-intervention need and gender-school-
intervention need to our set O, building the basis for our guided
attribute upsampling process. Figure 2 (left) illustrates the accuracy
of the detector in terms of AUC for the baseline (no upsampling)
and the different upsampling combinations in terms of upsampled
attributes and sampling method used. We note that the upsampling
does not significantly impact predictive performance with respect
to the baseline. The fairness of the classifier in terms of FNR for the
attribute gender for the baseline and the guided attribute upsam-
pling combinations is displayed in Figure 2 (middle). Similarly, we
visualize the FNR for the different school districts obtained with
and without upsampling in Figure 2 (right). Note that while we ran
the experiments with all described upsampling techniques, we re-
port only the result of the most successful upsampling technique as
described in Section 2.2. We observe that upsampling based on the
combination of school and intervention needs, reduces the FNR for
both school districts and leads to an unbiased detector in terms of
FNR (School M: 0.41, School H: 0.41). However, with this combina-
tion, only a small reduction in the FNR difference between genders
is achieved as the FNR difference is reduced to 0.14 (from 0.17).
When upsampling on the combination of gender and intervention
need, wemanage to again reduce the FNR difference between school
districts (from 0.16 to 0.09), but only achieve slight improvements
for gender (FNR difference reduced from 0.17 to 0.15). However,
when we upsample on the full combination of attributes (gender -
school - intervention need), we achieve a substantial gain in fair-
ness: for school, the difference in FNR is reduced from 0.16 to 0.05
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Table 2: Baseline performance and fairness results in terms of AUC and FNR. It can be observed that there are differences in
FNR across demographic attributes for both learning contexts.

Accuracy (AUC) Fairness (FNR)
Overall Females Males School A School B Country 1 Country 2

TugLet 0.68 ± 0.05 0.53 ± 0.14 0.70 ± 0.19 0.57 ± 0.13 0.73 ± 0.25
Flipped Classroom 0.63 ± 0.13 0.56 ± 0.38 0.43 ± 0.26 0.58 ± 0.24 0.42 ± 0.29

and for gender from 0.17 to 0.08. The original FPR differences for
both genders and school areas were initially relatively low (0.01
and 0.06 respectively). In the former case, oversampling with a
combination that involved gender retained the same balance (+/-
0.01). In all attributes oversampling cases, FPR differences across
school areas either decreased or remained the same.
Flipped Classroom. For this learning context, we found bias in the
detector for both investigated attributes in our first analysis. While
the data set already had an imbalance with respect to gender (under-
representation of females), it was balanced with respect to the
country of diploma. Therefore, similar to TugLet, we investigated
the interaction effects between the demographic attributes and the
labels. We observed that combined attributes led to an imbalance
(males-Country CF: 29%, males-Country CO: 36%, females-Country
CF: 20%, females-Country CO: 15%), with females from country
CO being strongly under-represented. We also found that students
needing intervention were generally under-represented in the data
set (label 1; 42%). Furthermore, we observed an interaction effect
between country and label: 62% of the struggling students obtained
their diploma in country CO. We therefore hypothesized that the
bias in the detector stemmed from an interaction effect between
gender and country and that we could therefore mitigate this bias
by upsampling on the combination of those attributes (H2-2).

Given our observations, we added the following combinations
to our set O as a basis for the guided upsampling process: gen-
der, gender-country, intervention need, gender-intervention need,
country-intervention need and upsampled using the different tech-
niques. The resulting AUC scores is reported in Figure 3 (left). We
again display the baseline accuracy as well as the accuracy when
upsampling on different combinations of attributes, reporting only
the optimal upsampling technique for each combination. Upsam-
pling leads to a gain in accuracy for all investigated attributes. This
improved accuracy can be explained by the fact that the original
dataset exhibited a class imbalance. We achieve the highest accu-
racy when oversampling on intervention need (AUC: 0.70), but the
difference in FNR is reduced only for country; it decreases from
0.16 to 0.08. The FNRs for gender and country achieved for the
different upsampling methods are displayed in Figure 3 (middle
+ right). When upsampling on gender, as expected, the difference
in FNR is reduced for gender (from 0.13 to 0.07), but the bias for
country is even increased (from 0.16 to 0.26). Upsampling based
on country and intervention need was unexpectedly not helpful,
leading to only minor reductions in bias. By upsampling on coun-
try and gender, we managed to reduce the difference in FNR to
0.02 for both attributes. In terms of FPR, a similar trend to what
happened in Tuglet was observed. Oversampling on demographics

bore no improvement or was worse in terms of gender balance, but
it reduced the differences across countries systematically.
In summary, the guided upsampling on combined attributes reduced
detectors bias for both data sets. For both learning contexts, the largest
reduction was achieved when oversampling on the combined demo-
graphic attributes, confirming both of our hypotheses H2-1 and H2-2.
We observed that for the flipped classroom data set, upsampling also
improved the detector accuracy, probably due to the interaction effects
between the label and demographic attributes. Moreover, the choice
of the upsampling technique is essential; different techniques might
be optimal based on the imbalance distribution in the data.

3.4 RQ3: Behavioral Oversampling
In our first two analyses, we observed that single demographic
attributes are not always a reliable proxy for under-represented
behaviors, but that combined demographic attributes seem to be.
However, this might not be the case for all learning contexts and
access to student demographics might be difficult. In our last analy-
sis, we therefore investigated the effects of behavioral upsampling
on both detector accuracy and fairness.
TugLet. For TugLet, we used the six behavioral profiles identified
and demonstrated to be associated with students’ learning success
by [16]. They are not balanced, i.e. the according clusters do not
have the same size (systematic explorers: 14%, explorers: 23%, non
explorers: 34%, slow explorers: 0.04%, mixed explorers: 0.13%, slow
passers:12%). Given the association between the detected behaviors
and success and the under-representation of some type of behaviors,
we hypothesized that upsampling on the identified profiles would
decrease the bias of the detector (H3-1).

To test this hypothesis, we upsampled based on the identified
learning behaviors. Figure 2 (left) shows the accuracy in terms of
AUC for the predictor after upsampling. While our experiments cov-
ered all upsampling techniques described in Section 2.2, we again
report only the results of the most successful technique. Similar to
the guided attribute oversampling, the behavioral upsampling does
not lead to a significant performance drop. We then investigated
the FNR of the detectors, as illustrated in Figure 2 (middle + right).
We observe that upsampling on behavior reduces the differences
in FNR between genders from 0.17 to 0.09. For school, we achieve
a reduction of the FNR from 0.16 to 0.10. From Figure 2 (middle),
we see that for gender, the reduction in bias is comparable to the
decrease achieved by oversampling on combined attributes. For
school, while the achieved decrease is substantial, it does not beat
the reduction achieved by oversampling on combined attributes
(see Figure 2 (right)). On FPR rates, the differences across schools
went from 0.06 to 0.02, and from 0.01 to 0.02 across genders.
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Figure 2: TugLet. Average and standard deviation over 10 folds of the false negative rate across genders for the baseline, the
guided attribute oversampling and the behavioral oversampling. (left): auc over the entire dataset, (center): fnr across different
genders, (right): fnr across different schools. Legend - sch.: school, int.: intervention, g.: gender, clus.:cluster.

Figure 3: Flipped Classrooms. Average and standard deviation over 10 folds of the false negative rate (fn) across genders for the
baseline, the guided attribute oversampling, and the behavioral oversampling. Legend - cou.: country, int.: intervention, g.:
gender, clus.:cluster

Flipped Classroom. In the flipped classroom context, [25] clustered
students based on their SRL behavior and demonstrated that the
identified profiles were related to learning success. Again, the ob-
tained clusters were not balanced (A: 15%, B: 16%, C: 26%, D: 24%,
E: 20%). In a first analysis, it was found that cluster E had a much
lower rate (21%) of required intervention compared to the overall
data (58%), while also having a substantially higher proportion of
women than the general population. Given this imbalance across
clusters and the interaction between SRL behavior and learning
success, we again hypothesized that oversampling on the identified
behavioral profiles would decrease the detector bias (H3-2).

We therefore upsampled based on the identified behavioral pro-
files. Similar to the guided attribute oversampling, upsampling on
behaviors led to an improvement in overall accuracy, as shown in
Figure 3 (left). Moreover, by upsampling on behaviors, the differ-
ence in FNR between females and males was reduced from 0.13
to 0.01 (see Figure 3 (middle)). For the country of diploma, a de-
crease of unfairness from 0.16 to 0.09 was achieved (see Figure
3 (right)). For gender, the achieved reduction is in line with the
decrease obtained via oversampling on combined demographics
attributes. While the unfairness is almost halved also for country,
the combined demographics oversampling was still more successful.
FPR wise, though the difference across genders was significantly
higher, it went from 0.05 to 0.01 across countries.

In summary, oversampling on behavior was successful in mitigating
bias in the detectors for both learning contexts. While the behavioral
oversampling did not outperform guided demographic oversampling,
the obtained reductions in differences in FNR are comparable and we
therefore acceptH3-1 andH3-2. Behavioral oversampling is therefore
a valid approach for reducing bias when demographic attributes are
not available.

4 DISCUSSION
In this work we were broadly concerned with investigating and
mitigating biases in models designed to early identify students at
risk of failing. We worked with datasets from a compulsory flipped-
classroom course on linear algebra offered to university students
and an open-ended exploration environment (TugLet) designed
for middle-school students. Although these educational contexts
were very different, students in both were represented by both
behavioral sequences of interaction and demographic attributes. In
both cases, the models’ purpose was to detect at-risk students who
might benefit from remedial sessions between their class/course
and the final evaluation.

To answer our first research question, we investigated whether
existing early-detection models trained on this data exhibited
biases, and if these biases were related to demographic under-
representation. More specifically, we analyzed the performances
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of a bi-LSTM and an LSTM adapted to each dataset respectively,
and we inspected the models’ biases on gender and geographi-
cal attributes (country issuing the high school diploma for flipped
classrooms and school district for TugLet). We found differences
in false-negative rates (FNR) across demographic groups in mod-
els trained on both datasets, which means that deployed models
would exhibit biases against some demographic groups by not iden-
tifying them as needing help at higher rates. In the case of the
flipped-classroom model, these biases were aligned with under-
representation in the dataset. Women, students from School B, and
students from Country 1 all had higher FNRs, and these groups
were all underrepresented in the data. However, in the case of the
TugLet model, biases could not be connected to demographic under-
representation. In fact, TugLet data was almost perfectly balanced
across gender and SES despite exhibiting biases against subgroups
of these categories.

This finding helped motivate our second research question. We
investigated whether oversampling on combined attributes (guided
demographic oversampling) might better mitigate model biases in
comparison to single-attribute oversampling methods. For both
learning contexts, the answer was yes. The largest reduction in bias
was consistently achieved when oversampling on the combined
demographic attributes. Surprisingly, we also found that oversam-
pling also improved the flipped-classroom model’s overall accuracy.
We hypothesized that these gains in both bias reduction and ac-
curacy were likely because the guided demographic oversampling
approach made it possible to capture interaction effects between
the label and different demographic attributes. In other words, in-
tersectional groups (e.g., females from a particular school) may
exhibit specific behaviors related to educational outcomes, but that
these specific behaviors are drowned out by other, more-dominant
behavioral patterns when oversampling is only done on individual
attributes.

While guided demographic oversampling was more effective
than common demographic oversampling techniques, we identified
a number of limitations with this approach. First, this approach
is not possible when extensive demographic data is not available
(e.g., when only a single demographic attribute such as gender
or country of origin is available). Second, it is never possible to
know for sure if the right combination of attributes has been found.
There is always the possibility that the model is biased against
an intersectional group that has either not been upsampled, or
for whom a specific demographic attribute was not collected. For
example, if the model is actually biased against Black women, but
no information about race exists in the data, then it is not possible
to use guided demographic oversampling to correct these biases.
Finally, even if detailed demographic data is available, organizing
data into intersectional categories results in an exponential increase
in the number of groups, which increases the threat of amplifying
noise and complicates the choice of how to oversample the different
groups.

We proposed a method to sidestep these issues called behavioral
oversampling. This method was grounded in our hypothesis that
demographic upsampling works because it forces the model to pay
more attention to idiosyncratic behaviors exhibited by demographic
groups who are underrepresented in the data. So, rather than rely-
ing on the assumption that demographic attributes reliably serve as

a proxy for behavior, why not directly oversample on behavior it-
self? Our third and final research question was whether behavioral
oversampling would also help to mitigate biases in our detectors,
and if so how it would compare to the other demographic-based
methods. We first grouped students by clustering them in behavior
space, and then upsampled under-represented groups to encourage
the model to learn relationships between these behaviors and out-
comes of interest. This method consistently reduced biases across
demographic groups, and these reductions were comparable to
those obtained using demographic oversampling.

Though behavioral oversampling does manage to sidestep some
of the limitations of demographic oversampling while simultane-
ously reducing model biases, it also has its share of limitations.
First, it relies on the ability to accurately cluster behavioral data
into meaningful clusters. An important direction for future work
is to identify methods which produce meaningful clusters regard-
less of the data structure. Second, when demographic information
is unavailable, there is no way to confirm that this method has
succeeded in reducing biases against specific demographic groups.
Still, the ability to mitigate biases between groups exhibiting similar
behaviors is likely better than doing nothing at all.

Overall, our recommendations for those interested in mitigating
algorithmic bias in the domain of early detection of at-risk stu-
dents are as follows. First, when multiple demographic attributes
are available, we recommend examining model fairness within
subgroups to account for potential intersectional biases. Guided
attribute oversampling can then be used in place of more common
approaches to mitigate these biases. Second, if students can also be
clustered based on their behaviors, we recommend using behavioral
oversampling as well. In our experiments, behavioral oversampling
worked as well as guided attribute oversampling and in general
offers a privacy-friendly way to correct biases.

Finally, we have identified intersectional oversampling as an im-
portant direction for future research. Intersectional oversampling
would proceed similarly to guided demographic oversampling by
grouping students based on combinations of demographic attributes
and then oversampling these groups, but would differ in how bias
is mitigated. Instead of evaluating bias reduction within individual
demographic groups, reduction in bias would be evaluated across in-
tersectional groups. This change would bring guided demographic
oversampling more in-line with intersectional theory, and would
continue the work started in this paper to make early detection
models more fair and trustworthy.
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