
Sketching Intentions: Comparing Different Metaphors for
Programming Robots

Richard Davis
Stanford University

CERAS Building
520 Galvez Mall,

Stanford CA, USA
rldavis@stanford.edu

Engin Bumbacher
Stanford University

CERAS Building
520 Galvez Mall

Stanford CA, USA
buben@stanford.edu

Oceane Bel
University of Southern

California
Los Angeles CA, USA

obel@usc.edu

Arnan Sipitakiat
Chiang Mai University
239 Huaykaew Rd.,
Muang, Chiang Mai,

Thailand
arnans@eng.cmu.ac.th

Paulo Blikstein
Stanford University

CERAS Building
520 Galvez Mall

Stanford CA, USA
paulob@stanford.edu

ABSTRACT
This paper introduces a new environment for programming robots
and physical computing devices—the Spatial Computing Platform
(SCP)—and compares it to a text-based programming
environment (the Cricket Logo). The SCP simplifies the process
of constructing conditional statements that link the robot’s inputs
and outputs together. It does this by providing the user with a
virtual canvas that they can draw rectangles on using the mouse.
Each rectangle represents a range of sensor values, and specific
outputs can be assigned to each rectangle. When the sensor values
enter into the specified range, the outputs will turn on. We
designed a study with 60 youth to compare this environment to
Cricket Logo, a well-known variant of Logo designed to control
robotic devices. We found that participants using the spatial
computing platform were able to build programs of higher
complexity and make more changes to their programs over the
course of an hour-long workshop.

Categories and Subject Descriptors
D.1.7 [Programming Techniques]: Visual Programming

General Terms
Design, Experimentation, Languages

Keywords
Spatial Computing, Robotics, Programming Metaphors

1. INTRODUCTION
Some of the first concepts that a novice learning about building
programmable robots will encounter are those of input, output,
and control. The robot takes in information about the world
through different input sensors (e.g., light, sound, position), and
acts on the world through its output actuators (e.g., motors,
speakers, lights). The robot only begins to assume some measure
of intelligent behavior when the sensors and actuators are linked
together. While sensors and actuators can be directly connected
electrically, it is more typical for the connections between sensors
and actuators to be mediated by a layer of programmable logic
(i.e., control). That is, the sensors and actuators are both
connected to a computer or microcontroller, which is capable of
running user-created programs that process inputs from the
sensors and use that information to make decisions about what to
do with the actuators.

Because the microcontroller is a simple computer, it is capable of
being programmed using a wide range of languages. Typically,
microcontrollers are programmed using a variation of the C
programming language, with compilers being offered for the most
popular lines of chips (AVR, PIC). However, there is a strong
trend in educational robotics toward introducing children and
adolescents to robotics using alternate programming languages
and environments. This work is built on the assumption that
programming languages like C set the barrier of entry to learning
to program too high [2, 3].

Finding ways to make programming more accessible to children
has been an active area of research for decades. Papert began this
effort with the introduction of Logo. Since Papert, there has been
an explosion of different programming languages and
environments for children. These include new variants of Logo
like NetLogo [11], a broad range of snap-together block-based
languages [7], and data-flow languages [5].

These languages have been designed to program personal
computers, which means that most of the action takes place on-
screen. However, a smaller but thriving community of researchers
has been working simultaneously to design similar programming
environments suited for programming robots. These include
variants of Logo and other text-based programming environments
[9], environments that utilize snap-together blocks [4], and data-
flow languages [1].

A few of these languages have introduced new metaphors for
thinking about programming. For example, block-based languages
like Scratch changed the metaphor of programming to “snapping
together blocks representing statements, expressions, and control
structures” [8:16:7]. Scratch was designed to make programming
more like building with LEGO blocks, providing blocks for
commands, control, triggers, and functions [8]. Because of the
way that blocks snap together, it is impossible to make syntax
errors. Trying out new code can be as easy as swapping out one
block for another, and unused blocks can be left lying around the
workspace. The choice of the LEGO metaphor reduces the barrier
of entry to programming while providing the flexibility to create
programs of varying levels of complexity [6]. Moreover, it
changes programming into a more creative activity that allows for
novices to more easily tinker with code [8].

Tinkering has been identified as an important part of learning to
write computer programs [1]. Berland et al. describe tinkering as
both an orientation (“the act of either having or needing no plan in
the process of creating or modifying a computer program”) and a
set of activities (“trial and error, messing around or fussing,
finding and using feedback mechanisms”) [1:568].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
IDC '15, June 21 - 25, 2015, Medford, MA, USA
© 2015 ACM. ISBN 978-1-4503-3590-4/15/06�$15.00

Short Papers IDC 2015 Medford, MA, USA

391http://dx.doi.org/10.1145/2771839.2771924

In an effort to make tinkering with robots easier, the authors
developed a new metaphor for programming robots: Spatial
Computing [3, 10].

This metaphor drastically simplifies the process linking the
robot’s inputs and outputs through conditional logic. The Spatial
Computing Platform (SCP) reduces this activity to drawing
rectangles on a virtual canvas. Each rectangle represents a range
of sensor values, and specific outputs can be assigned to each
rectangle. When the sensor values enter into the specified range,
the outputs will turn on. In order to evaluate the SCP we designed
a study where we compared the SCP to a Logo programming
environment (Cricket Logo). This study is described in detail
below.

2. A NEW METAPHOR: SPATIAL
COMPUTING
2.1 Design
The Spatial Computing Platform (SCP) is a simple interface
aimed to help youth tinker with sensors, actuators, and the
conditional statements that link them together. It is a web-based
interface that provides users with a canvas where they can draw
rectangles with the mouse. Each of these rectangles corresponds
to a region in 2-D sensor space (Figure 1).

Figure 1: The Spatial Computing Platform
The SCP is designed to work with the GoGo Board, which
provides 8 sensor inputs and four actuator outputs (Sipitakiat et
al., 2004). These 8 sensors are represented along the x- and y-axes
of the SCP canvas. Clicking on the sensor number activates that
sensor and displays its value as a green dot on the canvas. When
selecting one sensor on the x-axis and another on the y-axis, the
green dot is able to move through a two-dimensional sensor space
that captures all of the combined sensor values.

Once a rectangle has been drawn on the interface, the user can
drag an output letter (A, B, C, D) from the top-right onto the
region. Once the output has been assigned, the power (low,
medium, high) and polarity (forward, reverse) can be set by
dragging their icons onto the region. When the sensor values
combine so that the green dot enters into a rectangular region, the
assigned output turns on. For example, drawing a rectangle on the
canvas and assigning it to an output as shown in Figure 2 below is
functionally equivalent to a relatively complex conditional
statement in Logo (Figure 3).

Figure 2: A simple sensor-actuator assignment

Figure 3: The Logo code needed to achieve the same effect as
drawing the rectangle in Figure 2

3. METHODS
3.1 Participants
We participated in a day-long series of workshops about
electronics, building and robotics organized by a local charter
school. The workshop took place on a Saturday and was widely
advertised in the region for youth aged 8-12. The workshop series
was free and open to the public, which meant that the participants
did not necessarily all attend the same school (we did not collect
data on their school). The data for this study was collected in the
robotics workshop, which our group designed. This is an hour-
long workshop that we gave three times over the course of the day
to 60 participants in total. There were 6 computer/robot stations
available, which meant that the participants worked in groups of
two to four. Participants were free to choose their work station. 45
out of the 60 participants filled out a post-survey about their
background and experiences in the workshop. The average
participant age was 10 years old (SD = 1.9). 19 out of the 45
children were girls. 31 out of the 45 participants had tried
programming before, and 27 out of 45 had prior experience
building robots. Almost all of children gained their prior
experience from working with LEGO Mindstorms. None of the
children were familiar with Cricket Logo or the SCP.

3.2 Research Design
During the workshop facilitated by two of the authors, participants
worked in groups of two and three at stations with a laptop
computer connected to a GoGo board-powered robotic. The robot
was equipped with two infrared sensors on the bottom (for sensing
dark and light strips) and two motors connected to the front

Short Papers IDC 2015 Medford, MA, USA

392

wheels. The participants were able to upload new programs from
the laptop to the robot over a standard USB cable.

Each workshop followed the same schedule. In the first 15
minutes, one of the researchers gave a short lecture on sensors and
actuators, and guided the participants through the construction of
a simple, working program using either the Cricket Logo
programming environment or SCP. The program instructed the
robot to move forward while it was on a light surface and to stop
when it was on a dark (colored black) surface. After that, the
participants were challenged to create a program that would allow
the robot to follow a black strip on the ground. Participants
worked on this problem for 40 minutes. Finally, in the last five
minutes of the workshop, consenting participants filled out a post-
survey.
In the first of the three workshops, participants worked with
Cricket Logo, a text-based programming environment for the
GoGo board. In the second and third workshops the participants
used the new Spatial Computing Platform (described in section 3
above). Aside from the programming environment, nothing else
was changed between workshops. This structure resulted in a
simple experimental design with two conditions: Text-based Logo
or Spatial programming environment (Figure 4).

Figure 4: Experimental Design

3.3 Measures
We had two data sources: the post-survey and the video
recordings of the laptop screens. The post-survey consisted of 14
questions asking participants about the age, gender, prior
programming experience, and the experience in the workshop. As
mentioned previously, 45 out of the 60 participants filled out the
survey. We performed basic statistical tests on the surveys,
finding no different significant differences in these measures
between the two conditions. The laptop screens were recorded
using Camtasia Studio. Due to a glitch in the recording software,
we ended up with 10 screen recordings in total, 3 of the workshop
using Cricket Logo, and 7 of the remaining two workshops. We
coded the videos for the types of interactions participants had with
the software, the number of different programs uploaded to the
robot, and the number and types of changes made to each
program. The unit of analysis was the participant group at a
computer station.

4. RESULTS
Because there were no significant differences between the groups’
experiences in the workshop, we have omitted those results from
this section. Instead, we focus specifically on our findings from
the video coding process. We present exploratory statistical
analyses, as the small number of groups does not allow for any
confirmatory analysis.

4.1 Differences in Program Complexity
In the lecture portion of the workshop, participants constructed a
working program along with the instructor. This program used the
input from a single sensor to control the power to a single output.
In order to measure the level of program complexity, we looked at
the number of conceptual edits participants made to the starter
code and the number of sensors used in the programming code. A
conceptual edit is an edit adds a new piece of functionality to the
code (e.g., modifying the number of sensors, adding new
conditional statements). Participants in the Logo group made a
smaller number of edits on average than those in the SCP group.
More importantly, only one group using the Logo environment
added input from a second sensor to their code, while all the
groups using the SCP integrated information from both sensors
into their programs.

4.2 Conditional Confusion in Logo
All of the groups using the Logo programming environment
appeared to have trouble with construction of conditional
statements linking sensor values to actuator outputs. For example,
while trying to get their robot to follow the black line one of the
groups changed the direction of the inequality while also
swapping the conditional clauses. This resulted in new code that
appeared to be different but was functionally equivalent (Figure
5).

Figure 5: Changing the inequality and swapping the
conditional clauses results in the same functionality

4.3 Rate of Programming
We measured the rate or programming by recording each time a
group successfully uploaded working code to the robot. For an
upload to be counted, it had to be different from the previous
upload and compile successfully. We found significant differences
between the two groups on this measure. The group using Logo
uploaded new programs at a significantly slower rate, 0.16 new
working uploads per minute (SD=0.09) than the group using the
SCP, who uploaded 0.40 new working programs per minute
(SD=0.12); t(5.42) = 3.357, p = 0.02.

5. CONCLUSION
Youth in the workshop who worked with the Spatial Computing
Platform (SCP) were more likely to make complex changes to

Short Papers IDC 2015 Medford, MA, USA

393

their starter code while also uploading new versions of their code
to their robots at a higher rate. Both of these findings provided
evidence that the SCP succeeded in making it easier to tinker with
the sensors, actuators, and the control structures that link them
together. These findings raised two further questions. First, what
were the features of the SCP that made it better for tinkering?
Second, did participants using the SCP also have a better
understanding of the logic connecting the sensors and actuators in
the robots they were programming? In order to answer these
questions we will return to the videos from the workshop.

To answer the first question we can analyze differences in the
software design as well as evidence from the videos. The text-
based programming environment provides different tabs for users
to interact with the GoGo Board. The Logo tab is where
participants write the Logo code and upload it to the GoGo Board.
The other tab, the GoGo Console, provides a simple, non-
programmable control panel for the GoGo Board. This tab
contains buttons and sliders that allow the user to directly interact
with the GoGo Board by turning motors on and off, changing their
direction, and reading the values of the sensors. All of the groups
in the text-based condition repeatedly navigated to this control
panel to change the settings of their robots, even after having
uploaded Logo code that governed the robots’ behavior. There
was an interesting behavioral difference within groups between
the two tabs: In the Logo tab, the participants were careful, barely
making any changes to the code beyond flipping signs and
changing numbers. In the Console tab on the other hand, they
clicked buttons and dragged sliders frequently and with ease.

The participants using the SCP seemed similarly at ease while
drawing rectangles and assigning different outputs to them.
However, the SCP is functionally equivalent to the Logo tab, as it
is a programmable environment. Thus, the SCP appears to provide
the ease of use that comes with a non-programmable control-panel
with the functionality of a programming environment.

Looking for the similarities between the GoGo Console and the
SCP will help draw out the beneficial features of the SCP. First, in
both the GoGo Console and the SCP, users can only make
changes using the mouse. This has the effect of reducing the
programming language to little more two buttons and gesture.
When compared to the programming in Logo, this drastically
reduces the number of actions a user needs to make to achieve the
same level of functionality (compare Figure 2 and 3). Second,
neither the GoGo Console nor the SCP can be put into a broken
state. Participants in the Logo group made a number of very minor
syntax errors (e.g., mistakenly using a vertical bar instead of a
square bracket) that crashed their programs with compiler errors.
This type of mistake was not possible in the SCP.
Regarding the second question, there is some evidence that the
SCP provided a more transparent pathway for participants to
understand how their code was controlling the robot’s behavior. In
the SCP, the sensor values are represented by a green dot moving
across the canvas that updates in real time, meaning both the
program output and the programming environment are located on
the same screen. Users can see that when the dot moves into
different rectangular regions, the outputs assigned to those regions
turn on. The youth in our study recognized that the green dot
changed along with the amount of light reaching the IR sensors.
For example, after only 12 minutes, one of the boys using the SCP
exclaimed “Oh, it’s when that thing (the green dot) goes in there
(the rectangle) that’s when it (the motor) goes.” He then checked
his understanding by drawing very small rectangles around the
green dot. Traditional text-based environments do not provide this

layer of feedback on top of the Logo code. In order to see the
sensor values within most Logo environments the user has to
leave the programming tab. In our study, we observed one group
using the Logo environment that blindly tried different cutoff
thresholds rather than clicking back and forth between the tabs to
check the threshold values against the actual sensor values. We
interpreted this behavior to mean that the participants in this group
did not understand that the selection of threshold values has to be
matched to the actual sensor values. This might suggest that this
group also had a weaker understanding of the connections
between the sensors, code, and actuators.

In sum, the SCP fostered tinkering by providing a simpler and
more resilient way to achieve the same functionality as
programming in Logo. Furthermore, by displaying the sensor
values directly on top of the logical layer in real time, it provided
a more transparent pathway for youth to understand how their
code controlled their robot’s behavior. We believe that these are
two important features for a programming environment that
introduces children to programming microcontrollers.

6. REFERENCES
[1] Berland, M. et al. 2013. Using Learning Analytics to

Understand the Learning Pathways of Novice Programmers.
Journal of the Learning Sciences. 22, 4 (Oct. 2013), 564–
599.

[2] Blikstein, P. (2013, June). Gears of our childhood:
constructionist toolkits, robotics, and physical computing,
past and future. In Proceedings of the 12th International
Conference on Interaction Design and Children (pp. 173-
182). ACM.

[3] Blikstein, P. and Sipitakiat, A. 2011. QWERTY and the art
of designing microcontrollers for children. Proceedings of
the 10th International Conference on Interaction Design and
Children (2011), 234–237.

[4] Millner, A. and Baafi, E. 2011. Modkit: blending and
extending approachable platforms for creating computer
programs and interactive objects. Proceedings of the 10th
International Conference on Interaction Design and
Children (2011), 250–253.

[5] Puckette, M. and others 1996. Pure Data: another integrated
computer music environment. Proceedings of the Second
Intercollege Computer Music Concerts. (1996), 37–41.

[6] Resnick, M., & Silverman, B. 2005. Some reflections on
designing construction kits for kids. In Proceedings of the
2005 conference on Interaction design and children (pp.
117-122). ACM.

[7] Resnick, M. et al. 2009. Scratch: programming for all.
Communications of the ACM. 52, 11 (2009), 60–67.

[8] Resnick, M. and Rosenbaum, E. 2013. Designing for
tinkerability. Design, make, play: Growing the next
generation of STEM innovators. (2013), 163–181.

[9] Sipitakiat, A. et al. 2004. GoGo board: augmenting
programmable bricks for economically challenged audiences.
Proceedings of the 6th international conference on Learning
sciences (2004), 481–488.

[10] Sipitakiat, A. (2007). Giving the Head a Hand (Doctoral
dissertation, Massachusetts Institute of Technology).

[11] Wilensky, U. and Evanston, I. 1999. NetLogo: Center for
connected learning and computer-based modeling.
Northwestern University, Evanston, IL. (1999), 49–52.

Short Papers IDC 2015 Medford, MA, USA

394

